Skip to main content

Introductory Chemistry - 1st Canadian Edition: Chapter 16. Organic Chemistry

Introductory Chemistry - 1st Canadian Edition
Chapter 16. Organic Chemistry
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Acknowledgments
  6. Dedication
  7. About BCcampus Open Education
  8. Chapter 1. What is Chemistry
    1. Some Basic Definitions
    2. Chemistry as a Science
  9. Chapter 2. Measurements
    1. Expressing Numbers
    2. Significant Figures
    3. Converting Units
    4. Other Units: Temperature and Density
    5. Expressing Units
    6. End-of-Chapter Material
  10. Chapter 3. Atoms, Molecules, and Ions
    1. Acids
    2. Ions and Ionic Compounds
    3. Masses of Atoms and Molecules
    4. Molecules and Chemical Nomenclature
    5. Atomic Theory
    6. End-of-Chapter Material
  11. Chapter 4. Chemical Reactions and Equations
    1. The Chemical Equation
    2. Types of Chemical Reactions: Single- and Double-Displacement Reactions
    3. Ionic Equations: A Closer Look
    4. Composition, Decomposition, and Combustion Reactions
    5. Oxidation-Reduction Reactions
    6. Neutralization Reactions
    7. End-of-Chapter Material
  12. Chapter 5. Stoichiometry and the Mole
    1. Stoichiometry
    2. The Mole
    3. Mole-Mass and Mass-Mass Calculations
    4. Limiting Reagents
    5. The Mole in Chemical Reactions
    6. Yields
    7. End-of-Chapter Material
  13. Chapter 6. Gases
    1. Pressure
    2. Gas Laws
    3. Other Gas Laws
    4. The Ideal Gas Law and Some Applications
    5. Gas Mixtures
    6. Kinetic Molecular Theory of Gases
    7. Molecular Effusion and Diffusion
    8. Real Gases
    9. End-of-Chapter Material
  14. Chapter 7. Energy and Chemistry
    1. Formation Reactions
    2. Energy
    3. Stoichiometry Calculations Using Enthalpy
    4. Enthalpy and Chemical Reactions
    5. Work and Heat
    6. Hess’s Law
    7. End-of-Chapter Material
  15. Chapter 8. Electronic Structure
    1. Light
    2. Quantum Numbers for Electrons
    3. Organization of Electrons in Atoms
    4. Electronic Structure and the Periodic Table
    5. Periodic Trends
    6. End-of-Chapter Material
  16. Chapter 9. Chemical Bonds
    1. Lewis Electron Dot Diagrams
    2. Electron Transfer: Ionic Bonds
    3. Covalent Bonds
    4. Other Aspects of Covalent Bonds
    5. Violations of the Octet Rule
    6. Molecular Shapes and Polarity
    7. Valence Bond Theory and Hybrid Orbitals
    8. Molecular Orbitals
    9. End-of-Chapter Material
  17. Chapter 10. Solids and Liquids
    1. Properties of Liquids
    2. Solids
    3. Phase Transitions: Melting, Boiling, and Subliming
    4. Intermolecular Forces
    5. End-of-Chapter Material
  18. Chapter 11. Solutions
    1. Colligative Properties of Solutions
    2. Concentrations as Conversion Factors
    3. Quantitative Units of Concentration
    4. Colligative Properties of Ionic Solutes
    5. Some Definitions
    6. Dilutions and Concentrations
    7. End-of-Chapter Material
  19. Chapter 12. Acids and Bases
    1. Acid-Base Titrations
    2. Strong and Weak Acids and Bases and Their Salts
    3. Brønsted-Lowry Acids and Bases
    4. Arrhenius Acids and Bases
    5. Autoionization of Water
    6. Buffers
    7. The pH Scale
    8. End-of-Chapter Material
  20. Chapter 13. Chemical Equilibrium
    1. Chemical Equilibrium
    2. The Equilibrium Constant
    3. Shifting Equilibria: Le Chatelier’s Principle
    4. Calculating Equilibrium Constant Values
    5. Some Special Types of Equilibria
    6. End-of-Chapter Material
  21. Chapter 14. Oxidation and Reduction
    1. Oxidation-Reduction Reactions
    2. Balancing Redox Reactions
    3. Applications of Redox Reactions: Voltaic Cells
    4. Electrolysis
    5. End-of-Chapter Material
  22. Chapter 15. Nuclear Chemistry
    1. Units of Radioactivity
    2. Uses of Radioactive Isotopes
    3. Half-Life
    4. Radioactivity
    5. Nuclear Energy
    6. End-of-Chapter Material
  23. Chapter 16. Organic Chemistry
    1. Hydrocarbons
    2. Branched Hydrocarbons
    3. Alkyl Halides and Alcohols
    4. Other Oxygen-Containing Functional Groups
    5. Other Functional Groups
    6. Polymers
    7. End-of-Chapter Material
  24. Chapter 17. Kinetics
    1. Factors that Affect the Rate of Reactions
    2. Reaction Rates
    3. Rate Laws
    4. Concentration–Time Relationships: Integrated Rate Laws
    5. Activation Energy and the Arrhenius Equation
    6. Reaction Mechanisms
    7. Catalysis
    8. End-of-Chapter Material
  25. Chapter 18. Chemical Thermodynamics
    1. Spontaneous Change
    2. Entropy and the Second Law of Thermodynamics
    3. Measuring Entropy and Entropy Changes
    4. Gibbs Free Energy
    5. Spontaneity: Free Energy and Temperature
    6. Free Energy under Nonstandard Conditions
    7. End-of-Chapter Material
  26. Appendix A: Periodic Table of the Elements
  27. Appendix B: Selected Acid Dissociation Constants at 25°C
  28. Appendix C: Solubility Constants for Compounds at 25°C
  29. Appendix D: Standard Thermodynamic Quantities for Chemical Substances at 25°C
  30. Appendix E: Standard Reduction Potentials by Value
  31. Glossary
  32. About the Authors
  33. Versioning History

Chapter 16. Organic Chemistry

All life on earth is ultimately based on photosynthesis — the process by which plants absorb CO2 and H2O from their environment and, in the presence of sunlight, convert those substances into a simple sugar (glucose) and ultimately into starches and other building blocks of life. The net photosynthesis chemical reaction is as follows:

\ce{6CO2}+\ce{6H2O}\xrightarrow{\text{light}}+\ce{C6H12O6}+\ce{6O2}

Oxygen is also a product of photosynthesis. Most forms of animal life (including people) depend on oxygen to breathe, which makes plants indispensable. Virtually all food sources come from plants, eaten either directly (as fruits, vegetables, or grains) or indirectly (as meat from animals that eat plants such as cattle, poultry, pigs, sheep, and goats). Plants are absolutely necessary for life to exist.

The net reaction for photosynthesis is misleadingly simple. A series of reactions, called light-dependent reactions, start by the absorption of light by pigments (not just chlorophyll, as commonly misunderstood) in plant cells. This is followed by a series of light-independent reactions, so named not because they happen in the dark but because they do not directly involve light. However, they involve the products of reactions stimulated by light, so they ultimately depend on light. The whole series of reactions involves many chemicals and enzymes, the breaking and making of chemical bonds, the transfer of electrons and H+ ions, and other chemical processes. The elucidation of the actual steps of photosynthesis — a process still unduplicated artificially — is a major achievement of modern chemistry.

Field of green plants with yellow flowers under a partly cloudy blue sky.
Figure 16.0 “Photosynthesis.” In the presence of the sun, plants perform photosynthesis, the chemical reactions that convert CO2 and H2O to glucose. The reaction also produces O2, which is necessary for animal life. Virtually all life on earth depends on photosynthesis.

Organic chemistry is the study of the chemistry of carbon compounds. Why focus on carbon? Carbon has properties that give its chemistry unparalleled complexity. It forms four covalent bonds, which give it great flexibility in bonding. It makes fairly strong bonds with itself (a characteristic called catenation), allowing for the formation of large molecules; it also forms fairly strong bonds with other elements, allowing for the possibility of a wide variety of substances. No other element demonstrates the versatility of carbon when it comes to making compounds. So an entire field of chemistry is devoted to the study of the compounds and reactivity of one element.

Because of the potential for complexity, chemists have defined a rather rigorous system to describe the chemistry of carbon. We will introduce some of that system in this chapter. Should you continue your study of chemistry beyond this text, you will find a much larger world of organic chemistry than we can cover in a single chapter.

Media Attributions

  • “Mustard Fields” © 2010 by Prasad Kholkute is licensed under a CC BY-SA (Attribution-ShareAlike) license

Annotate

Next Chapter
Hydrocarbons
PreviousNext
Chemistry

Copyright © 2014

                                by Jessie A. Key

            Introductory Chemistry - 1st Canadian Edition by Jessie A. Key is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org