Skip to main content

Introductory Chemistry - 1st Canadian Edition: The Chemical Equation

Introductory Chemistry - 1st Canadian Edition
The Chemical Equation
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Acknowledgments
  6. Dedication
  7. About BCcampus Open Education
  8. Chapter 1. What is Chemistry
    1. Some Basic Definitions
    2. Chemistry as a Science
  9. Chapter 2. Measurements
    1. Expressing Numbers
    2. Significant Figures
    3. Converting Units
    4. Other Units: Temperature and Density
    5. Expressing Units
    6. End-of-Chapter Material
  10. Chapter 3. Atoms, Molecules, and Ions
    1. Acids
    2. Ions and Ionic Compounds
    3. Masses of Atoms and Molecules
    4. Molecules and Chemical Nomenclature
    5. Atomic Theory
    6. End-of-Chapter Material
  11. Chapter 4. Chemical Reactions and Equations
    1. The Chemical Equation
    2. Types of Chemical Reactions: Single- and Double-Displacement Reactions
    3. Ionic Equations: A Closer Look
    4. Composition, Decomposition, and Combustion Reactions
    5. Oxidation-Reduction Reactions
    6. Neutralization Reactions
    7. End-of-Chapter Material
  12. Chapter 5. Stoichiometry and the Mole
    1. Stoichiometry
    2. The Mole
    3. Mole-Mass and Mass-Mass Calculations
    4. Limiting Reagents
    5. The Mole in Chemical Reactions
    6. Yields
    7. End-of-Chapter Material
  13. Chapter 6. Gases
    1. Pressure
    2. Gas Laws
    3. Other Gas Laws
    4. The Ideal Gas Law and Some Applications
    5. Gas Mixtures
    6. Kinetic Molecular Theory of Gases
    7. Molecular Effusion and Diffusion
    8. Real Gases
    9. End-of-Chapter Material
  14. Chapter 7. Energy and Chemistry
    1. Formation Reactions
    2. Energy
    3. Stoichiometry Calculations Using Enthalpy
    4. Enthalpy and Chemical Reactions
    5. Work and Heat
    6. Hess’s Law
    7. End-of-Chapter Material
  15. Chapter 8. Electronic Structure
    1. Light
    2. Quantum Numbers for Electrons
    3. Organization of Electrons in Atoms
    4. Electronic Structure and the Periodic Table
    5. Periodic Trends
    6. End-of-Chapter Material
  16. Chapter 9. Chemical Bonds
    1. Lewis Electron Dot Diagrams
    2. Electron Transfer: Ionic Bonds
    3. Covalent Bonds
    4. Other Aspects of Covalent Bonds
    5. Violations of the Octet Rule
    6. Molecular Shapes and Polarity
    7. Valence Bond Theory and Hybrid Orbitals
    8. Molecular Orbitals
    9. End-of-Chapter Material
  17. Chapter 10. Solids and Liquids
    1. Properties of Liquids
    2. Solids
    3. Phase Transitions: Melting, Boiling, and Subliming
    4. Intermolecular Forces
    5. End-of-Chapter Material
  18. Chapter 11. Solutions
    1. Colligative Properties of Solutions
    2. Concentrations as Conversion Factors
    3. Quantitative Units of Concentration
    4. Colligative Properties of Ionic Solutes
    5. Some Definitions
    6. Dilutions and Concentrations
    7. End-of-Chapter Material
  19. Chapter 12. Acids and Bases
    1. Acid-Base Titrations
    2. Strong and Weak Acids and Bases and Their Salts
    3. Brønsted-Lowry Acids and Bases
    4. Arrhenius Acids and Bases
    5. Autoionization of Water
    6. Buffers
    7. The pH Scale
    8. End-of-Chapter Material
  20. Chapter 13. Chemical Equilibrium
    1. Chemical Equilibrium
    2. The Equilibrium Constant
    3. Shifting Equilibria: Le Chatelier’s Principle
    4. Calculating Equilibrium Constant Values
    5. Some Special Types of Equilibria
    6. End-of-Chapter Material
  21. Chapter 14. Oxidation and Reduction
    1. Oxidation-Reduction Reactions
    2. Balancing Redox Reactions
    3. Applications of Redox Reactions: Voltaic Cells
    4. Electrolysis
    5. End-of-Chapter Material
  22. Chapter 15. Nuclear Chemistry
    1. Units of Radioactivity
    2. Uses of Radioactive Isotopes
    3. Half-Life
    4. Radioactivity
    5. Nuclear Energy
    6. End-of-Chapter Material
  23. Chapter 16. Organic Chemistry
    1. Hydrocarbons
    2. Branched Hydrocarbons
    3. Alkyl Halides and Alcohols
    4. Other Oxygen-Containing Functional Groups
    5. Other Functional Groups
    6. Polymers
    7. End-of-Chapter Material
  24. Chapter 17. Kinetics
    1. Factors that Affect the Rate of Reactions
    2. Reaction Rates
    3. Rate Laws
    4. Concentration–Time Relationships: Integrated Rate Laws
    5. Activation Energy and the Arrhenius Equation
    6. Reaction Mechanisms
    7. Catalysis
    8. End-of-Chapter Material
  25. Chapter 18. Chemical Thermodynamics
    1. Spontaneous Change
    2. Entropy and the Second Law of Thermodynamics
    3. Measuring Entropy and Entropy Changes
    4. Gibbs Free Energy
    5. Spontaneity: Free Energy and Temperature
    6. Free Energy under Nonstandard Conditions
    7. End-of-Chapter Material
  26. Appendix A: Periodic Table of the Elements
  27. Appendix B: Selected Acid Dissociation Constants at 25°C
  28. Appendix C: Solubility Constants for Compounds at 25°C
  29. Appendix D: Standard Thermodynamic Quantities for Chemical Substances at 25°C
  30. Appendix E: Standard Reduction Potentials by Value
  31. Glossary
  32. About the Authors
  33. Versioning History

The Chemical Equation

Learning Objectives

  1. Define chemical equation.
  2. Identify the parts of a chemical equation.

A chemical reaction expresses a chemical change. For example, one chemical property of hydrogen is that it will react with oxygen to make water. We can write that as follows:

hydrogen reacts with oxygen to make water

We can represent this chemical change more succinctly as:

hydrogen + oxygen → water

where the + sign means that the two substances interact chemically with each other and the → symbol implies that a chemical reaction takes place. But substances can also be represented by chemical formulas. Remembering that hydrogen and oxygen both exist as diatomic molecules, we can rewrite our chemical change as:

H2 + O2 → H2O

This is an example of a chemical equation, which is a concise way of representing a chemical reaction. The initial substances are called reactants, and the final substances are called products.

Unfortunately, it is also an incomplete chemical equation. The law of conservation of matter says that matter cannot be created or destroyed. In chemical equations, the number of atoms of each element in the reactants must be the same as the number of atoms of each element in the products. If we count the number of hydrogen atoms in the reactants and products, we find two hydrogen atoms. But if we count the number of oxygen atoms in the reactants and products, we find that there are two oxygen atoms in the reactants but only one oxygen atom in the products.

What can we do? Can we change the subscripts in the formula for water so that it has two oxygen atoms in it? No; you cannot change the formulas of individual substances because the chemical formula for a given substance is characteristic of that substance. What you can do, however, is to change the number of molecules that react or are produced. We do this one element at a time, going from one side of the reaction to the other, changing the number of molecules of a substance until all elements have the same number of atoms on each side.

To accommodate the two oxygen atoms as reactants, let us assume that we have two water molecules as products:

H2 + O2 → 2H2O

The 2 in front of the formula for water is called a coefficient. Now there is the same number of oxygen atoms in the reactants as there are in the product. But in satisfying the need for the same number of oxygen atoms on both sides of the reaction, we have also changed the number of hydrogen atoms on the product side, so the number of hydrogen atoms is no longer equal. No problem—simply go back to the reactant side of the equation and add a coefficient in front of the H2. The coefficient that works is 2:

2H2 + O2 → 2H2O

There are now four hydrogen atoms in the reactants and also four atoms of hydrogen in the product. There are two oxygen atoms in the reactants and two atoms of oxygen in the product. The law of conservation of matter has been satisfied. When the reactants and products of a chemical equation have the same number of atoms of all elements present, we say that an equation is balanced. All proper chemical equations are balanced. If a substance does not have a coefficient written in front of it, it is assumed to be 1. Also, the convention is to use all whole numbers when balancing chemical equations. This sometimes makes us do a bit more “back and forth” work when balancing a chemical equation.

Example 4.1

Problems

Write and balance the chemical equation for each given chemical reaction.

  1. Hydrogen and chlorine react to make HCl.
  2. Ethane, C2H6, reacts with oxygen to make carbon dioxide and water.

Solutions

  1. Let us start by simply writing a chemical equation in terms of the formulas of the substances, remembering that both elemental hydrogen and chlorine are diatomic:

    H2 + Cl2 → HCl

    There are two hydrogen atoms and two chlorine atoms in the reactants and one of each atom in the product. We can fix this by including the coefficient 2 on the product side:

    H2 + Cl2 → 2HCl

    Now there are two hydrogen atoms and two chlorine atoms on both sides of the chemical equation, so it is balanced.

  2. Start by writing the chemical equation in terms of the substances involved:

    C2H6 + O2 → CO2 + H2O

    We have two carbon atoms on the left, so we need two carbon dioxide molecules on the product side, so that each side has two carbon atoms; that element is balanced. We have six hydrogen atoms in the reactants, so we need six hydrogen atoms in the products. We can get this by having three water molecules:

    C2H6 + O2 → 2CO2 + 3H2O

    Now we have seven oxygen atoms in the products (four from the CO2 and three from the H2O). That means we need seven oxygen atoms in the reactants. However, because oxygen is a diatomic molecule, we can only get an even number of oxygen atoms at a time. We can achieve this by multiplying the other coefficients by 2:

    2C2H6 + O2 → 4CO2 + 6H2O

    By multiplying everything else by 2, we don’t unbalance the other elements, and we now get an even number of oxygen atoms in the product—14. We can get 14 oxygen atoms on the reactant side by having 7 oxygen molecules:

    2C2H6 + 7O2 → 4CO2 + 6H2O

    As a check, recount everything to determine that each side has the same number of atoms of each element. This chemical equation is now balanced.

Test Yourself

Write and balance the chemical equation that represents nitrogen and hydrogen reacting to produce ammonia, NH3.

Answer

N2 + 3H2 → 2NH3

Many chemical equations also include phase labels for the substances: (s) for solid, (ℓ) for liquid, (g) for gas, and (aq) for aqueous (i.e., dissolved in water). Special conditions, such as temperature, may also be listed above the arrow. For example:

2NaHCO3(s) → 200°C Na2CO3(s) + CO2(g) + H2O(ℓ)

Key Takeaways

  • A chemical equation is a concise description of a chemical reaction.
  • Proper chemical equations are balanced.

Exercises

Questions

  1. From the statement “nitrogen and hydrogen react to produce ammonia,” identify the reactants and the products.
  2. From the statement “sodium metal reacts with water to produce sodium hydroxide and hydrogen,” identify the reactants and the products.
  3. From the statement “magnesium hydroxide reacts with nitric acid to produce magnesium nitrate and water,” identify the reactants and the products.
  4. From the statement “propane reacts with oxygen to produce carbon dioxide and water,” identify the reactants and the products.
  5. Write and balance the chemical equation described by Exercise 1.
  6. Write and balance the chemical equation described by Exercise 2.
  7. Write and balance the chemical equation described by Exercise 3.
  8. Write and balance the chemical equation described by Exercise 4. The formula for propane is C3H8.
  9. Balance: ___NaClO3 → ___NaCl + ___O2
  10. Balance: ___N2 + ___H2 → ___N2H4
  11. Balance: ___Al + ___O2 → ___Al2O3
  12. Balance: ___C2H4 + ___O2 → ___CO2 + ___H2O
  13. How would you write the balanced chemical equation in Exercise 10 if all substances were gases?
  14. How would you write the balanced chemical equation in Exercise 12 if all the substances except water were gases and water itself were a liquid?

Answers

  1. reactants: nitrogen and hydrogen; product: ammonia
  1. reactants: magnesium hydroxide and nitric acid; products: magnesium nitrate and water
  1. N2 + 3H2 → 2NH3
  1. Mg(OH)2 + 2HNO3 → Mg(NO3)2 + 2H2O
  1. 2NaClO3 → 2NaCl + 3O2
  1. 4Al + 3O2 → 2Al2O3
  1. N2(g) + 3H2(g) → 2NH3(g)

Annotate

Next Chapter
Types of Chemical Reactions: Single- and Double-Displacement Reactions
PreviousNext
Chemistry

Copyright © 2014

                                by Jessie A. Key

            Introductory Chemistry - 1st Canadian Edition by Jessie A. Key is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org