Skip to main content

Introductory Chemistry - 1st Canadian Edition: Acknowledgments

Introductory Chemistry - 1st Canadian Edition
Acknowledgments
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Acknowledgments
  6. Dedication
  7. About BCcampus Open Education
  8. Chapter 1. What is Chemistry
    1. Some Basic Definitions
    2. Chemistry as a Science
  9. Chapter 2. Measurements
    1. Expressing Numbers
    2. Significant Figures
    3. Converting Units
    4. Other Units: Temperature and Density
    5. Expressing Units
    6. End-of-Chapter Material
  10. Chapter 3. Atoms, Molecules, and Ions
    1. Acids
    2. Ions and Ionic Compounds
    3. Masses of Atoms and Molecules
    4. Molecules and Chemical Nomenclature
    5. Atomic Theory
    6. End-of-Chapter Material
  11. Chapter 4. Chemical Reactions and Equations
    1. The Chemical Equation
    2. Types of Chemical Reactions: Single- and Double-Displacement Reactions
    3. Ionic Equations: A Closer Look
    4. Composition, Decomposition, and Combustion Reactions
    5. Oxidation-Reduction Reactions
    6. Neutralization Reactions
    7. End-of-Chapter Material
  12. Chapter 5. Stoichiometry and the Mole
    1. Stoichiometry
    2. The Mole
    3. Mole-Mass and Mass-Mass Calculations
    4. Limiting Reagents
    5. The Mole in Chemical Reactions
    6. Yields
    7. End-of-Chapter Material
  13. Chapter 6. Gases
    1. Pressure
    2. Gas Laws
    3. Other Gas Laws
    4. The Ideal Gas Law and Some Applications
    5. Gas Mixtures
    6. Kinetic Molecular Theory of Gases
    7. Molecular Effusion and Diffusion
    8. Real Gases
    9. End-of-Chapter Material
  14. Chapter 7. Energy and Chemistry
    1. Formation Reactions
    2. Energy
    3. Stoichiometry Calculations Using Enthalpy
    4. Enthalpy and Chemical Reactions
    5. Work and Heat
    6. Hess’s Law
    7. End-of-Chapter Material
  15. Chapter 8. Electronic Structure
    1. Light
    2. Quantum Numbers for Electrons
    3. Organization of Electrons in Atoms
    4. Electronic Structure and the Periodic Table
    5. Periodic Trends
    6. End-of-Chapter Material
  16. Chapter 9. Chemical Bonds
    1. Lewis Electron Dot Diagrams
    2. Electron Transfer: Ionic Bonds
    3. Covalent Bonds
    4. Other Aspects of Covalent Bonds
    5. Violations of the Octet Rule
    6. Molecular Shapes and Polarity
    7. Valence Bond Theory and Hybrid Orbitals
    8. Molecular Orbitals
    9. End-of-Chapter Material
  17. Chapter 10. Solids and Liquids
    1. Properties of Liquids
    2. Solids
    3. Phase Transitions: Melting, Boiling, and Subliming
    4. Intermolecular Forces
    5. End-of-Chapter Material
  18. Chapter 11. Solutions
    1. Colligative Properties of Solutions
    2. Concentrations as Conversion Factors
    3. Quantitative Units of Concentration
    4. Colligative Properties of Ionic Solutes
    5. Some Definitions
    6. Dilutions and Concentrations
    7. End-of-Chapter Material
  19. Chapter 12. Acids and Bases
    1. Acid-Base Titrations
    2. Strong and Weak Acids and Bases and Their Salts
    3. Brønsted-Lowry Acids and Bases
    4. Arrhenius Acids and Bases
    5. Autoionization of Water
    6. Buffers
    7. The pH Scale
    8. End-of-Chapter Material
  20. Chapter 13. Chemical Equilibrium
    1. Chemical Equilibrium
    2. The Equilibrium Constant
    3. Shifting Equilibria: Le Chatelier’s Principle
    4. Calculating Equilibrium Constant Values
    5. Some Special Types of Equilibria
    6. End-of-Chapter Material
  21. Chapter 14. Oxidation and Reduction
    1. Oxidation-Reduction Reactions
    2. Balancing Redox Reactions
    3. Applications of Redox Reactions: Voltaic Cells
    4. Electrolysis
    5. End-of-Chapter Material
  22. Chapter 15. Nuclear Chemistry
    1. Units of Radioactivity
    2. Uses of Radioactive Isotopes
    3. Half-Life
    4. Radioactivity
    5. Nuclear Energy
    6. End-of-Chapter Material
  23. Chapter 16. Organic Chemistry
    1. Hydrocarbons
    2. Branched Hydrocarbons
    3. Alkyl Halides and Alcohols
    4. Other Oxygen-Containing Functional Groups
    5. Other Functional Groups
    6. Polymers
    7. End-of-Chapter Material
  24. Chapter 17. Kinetics
    1. Factors that Affect the Rate of Reactions
    2. Reaction Rates
    3. Rate Laws
    4. Concentration–Time Relationships: Integrated Rate Laws
    5. Activation Energy and the Arrhenius Equation
    6. Reaction Mechanisms
    7. Catalysis
    8. End-of-Chapter Material
  25. Chapter 18. Chemical Thermodynamics
    1. Spontaneous Change
    2. Entropy and the Second Law of Thermodynamics
    3. Measuring Entropy and Entropy Changes
    4. Gibbs Free Energy
    5. Spontaneity: Free Energy and Temperature
    6. Free Energy under Nonstandard Conditions
    7. End-of-Chapter Material
  26. Appendix A: Periodic Table of the Elements
  27. Appendix B: Selected Acid Dissociation Constants at 25°C
  28. Appendix C: Solubility Constants for Compounds at 25°C
  29. Appendix D: Standard Thermodynamic Quantities for Chemical Substances at 25°C
  30. Appendix E: Standard Reduction Potentials by Value
  31. Glossary
  32. About the Authors
  33. Versioning History

1

Acknowledgments

Jessie A. Key

I would like to acknowledge the team at BCcampus for all their hard work on this project. Project managers Amanda Coolidge and Clint Lalonde, and the entire editorial team were instrumental to the success of this work. As well, I would like to thank my colleagues at Vancouver Island University for their support.

Jessie A. Key

September 2014

The decision to write a new textbook from scratch is not one to be taken lightly. The author becomes a saint to some and a sinner to others—and the feedback from the “others” is felt more acutely than the feedback from the “some”! Ultimately, the decision to write a new book comes from the deep feeling that an author can make a positive contribution to the field, and that it is ultimately time well invested.

It also helps that there are people supporting the author both personally and professionally. The first person to thank must be Jennifer Welchans of Flat World Knowledge. I have known Jen for years; indeed, she was instrumental in getting me to write my first academic book, a math review book that is still available through another publisher. We reconnected recently, and I learned that she was working for a new publisher with some interesting publishing ideas. With her urging, the editorial director and I got together, first by phone and then in person, to discuss this project. With all the enthusiasm and ideas that Flat World Knowledge brought to the table, it was difficult not to sign on and write this book. So thanks, Jen—again. Hopefully this won’t be the last book we do together.

Thanks also to Michael Boezi, editorial director at Flat World Knowledge, for his enthusiastic support. Jenn Yee, project manager at Flat World Knowledge, did a great job of managing the project and all of its pieces—manuscript, answers to exercises, art, reviews, revisions, and all the other things required to put a project like this together. Vanessa Gennarelli did a great job of filling in when necessary (although Jenn should know better than to take a vacation during a project). Kudos to the technology team at Flat World Knowledge, who had the ultimate job of getting this book out: Brian Brennan, David Link, Christopher Loncar, Jessica Carey, Jon Gottfried, Jon Williams, Katie Damo, Keith Avery, Mike Shnaydman, Po Ki Chui, and Ryan Lowe. I would also like to thank the production team at Scribe Inc., including Stacy Claxton, Chrissy Chimi, Melissa Tarrao, and Kevin McDermott. This book would not exist without any of these people.

Thanks to Mary Grodek and Bill Reiter of Cleveland State University’s Marketing Department for assistance in obtaining a needed photograph.

A project like this benefits from the expertise of external reviewers. I would like to thank the following people for their very thoughtful evaluation of the manuscript at several stages:

  • Sam Abbas, Palomar College
  • Bal Barot, Lake Michigan College
  • Sherri Borowicz, Dakota College of Bottineau
  • Ken Capps, Central Florida Community College
  • Troy Cayou, Coconino Community College
  • Robert Clark, Lourdes College
  • Daniel Cole, Central Piedmont Community College
  • Jo Conceicao, Metropolitan Community College
  • Bernadette Corbett, Metropolitan Community College
  • James Fisher, Imperial Valley College
  • Julie Klare, Gwinnett Technical College
  • Karen Marshall, Bridgewater College
  • Tchao Podona, Miami-Dade College
  • Kenneth Rodriguez, California State University–Dominguez Hills
  • Mary Sohn, Florida Institute of Technology
  • Angie Spencer, Greenville Technical College
  • Charles Taylor, Pomona College
  • Susan T. Thomas, The University of Texas at San Antonio
  • Linda Waldman, Cerritos College

Thanks especially to ANSR Source, who performed accuracy checks on various parts of the text. Should any inaccuracies remain, they are the responsibility of the author. I hope that readers will let me know if they find any; one of the beauties of the Flat World process is the ability to update the textbook quickly, so that it will be an even better book tomorrow.

I am looking forward to seeing how the Flat World Knowledge model works with this book, and I thank all the adopters and users in advance for their help in making it a better text.

David W. Ball

February 2011

Annotate

Next Chapter
Dedication
PreviousNext
Chemistry

Copyright © 2014

                                by Jessie A. Key

            Introductory Chemistry - 1st Canadian Edition by Jessie A. Key is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org