Skip to main content

Introductory Chemistry - 1st Canadian Edition: Spontaneity: Free Energy and Temperature

Introductory Chemistry - 1st Canadian Edition
Spontaneity: Free Energy and Temperature
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Acknowledgments
  6. Dedication
  7. About BCcampus Open Education
  8. Chapter 1. What is Chemistry
    1. Some Basic Definitions
    2. Chemistry as a Science
  9. Chapter 2. Measurements
    1. Expressing Numbers
    2. Significant Figures
    3. Converting Units
    4. Other Units: Temperature and Density
    5. Expressing Units
    6. End-of-Chapter Material
  10. Chapter 3. Atoms, Molecules, and Ions
    1. Acids
    2. Ions and Ionic Compounds
    3. Masses of Atoms and Molecules
    4. Molecules and Chemical Nomenclature
    5. Atomic Theory
    6. End-of-Chapter Material
  11. Chapter 4. Chemical Reactions and Equations
    1. The Chemical Equation
    2. Types of Chemical Reactions: Single- and Double-Displacement Reactions
    3. Ionic Equations: A Closer Look
    4. Composition, Decomposition, and Combustion Reactions
    5. Oxidation-Reduction Reactions
    6. Neutralization Reactions
    7. End-of-Chapter Material
  12. Chapter 5. Stoichiometry and the Mole
    1. Stoichiometry
    2. The Mole
    3. Mole-Mass and Mass-Mass Calculations
    4. Limiting Reagents
    5. The Mole in Chemical Reactions
    6. Yields
    7. End-of-Chapter Material
  13. Chapter 6. Gases
    1. Pressure
    2. Gas Laws
    3. Other Gas Laws
    4. The Ideal Gas Law and Some Applications
    5. Gas Mixtures
    6. Kinetic Molecular Theory of Gases
    7. Molecular Effusion and Diffusion
    8. Real Gases
    9. End-of-Chapter Material
  14. Chapter 7. Energy and Chemistry
    1. Formation Reactions
    2. Energy
    3. Stoichiometry Calculations Using Enthalpy
    4. Enthalpy and Chemical Reactions
    5. Work and Heat
    6. Hess’s Law
    7. End-of-Chapter Material
  15. Chapter 8. Electronic Structure
    1. Light
    2. Quantum Numbers for Electrons
    3. Organization of Electrons in Atoms
    4. Electronic Structure and the Periodic Table
    5. Periodic Trends
    6. End-of-Chapter Material
  16. Chapter 9. Chemical Bonds
    1. Lewis Electron Dot Diagrams
    2. Electron Transfer: Ionic Bonds
    3. Covalent Bonds
    4. Other Aspects of Covalent Bonds
    5. Violations of the Octet Rule
    6. Molecular Shapes and Polarity
    7. Valence Bond Theory and Hybrid Orbitals
    8. Molecular Orbitals
    9. End-of-Chapter Material
  17. Chapter 10. Solids and Liquids
    1. Properties of Liquids
    2. Solids
    3. Phase Transitions: Melting, Boiling, and Subliming
    4. Intermolecular Forces
    5. End-of-Chapter Material
  18. Chapter 11. Solutions
    1. Colligative Properties of Solutions
    2. Concentrations as Conversion Factors
    3. Quantitative Units of Concentration
    4. Colligative Properties of Ionic Solutes
    5. Some Definitions
    6. Dilutions and Concentrations
    7. End-of-Chapter Material
  19. Chapter 12. Acids and Bases
    1. Acid-Base Titrations
    2. Strong and Weak Acids and Bases and Their Salts
    3. Brønsted-Lowry Acids and Bases
    4. Arrhenius Acids and Bases
    5. Autoionization of Water
    6. Buffers
    7. The pH Scale
    8. End-of-Chapter Material
  20. Chapter 13. Chemical Equilibrium
    1. Chemical Equilibrium
    2. The Equilibrium Constant
    3. Shifting Equilibria: Le Chatelier’s Principle
    4. Calculating Equilibrium Constant Values
    5. Some Special Types of Equilibria
    6. End-of-Chapter Material
  21. Chapter 14. Oxidation and Reduction
    1. Oxidation-Reduction Reactions
    2. Balancing Redox Reactions
    3. Applications of Redox Reactions: Voltaic Cells
    4. Electrolysis
    5. End-of-Chapter Material
  22. Chapter 15. Nuclear Chemistry
    1. Units of Radioactivity
    2. Uses of Radioactive Isotopes
    3. Half-Life
    4. Radioactivity
    5. Nuclear Energy
    6. End-of-Chapter Material
  23. Chapter 16. Organic Chemistry
    1. Hydrocarbons
    2. Branched Hydrocarbons
    3. Alkyl Halides and Alcohols
    4. Other Oxygen-Containing Functional Groups
    5. Other Functional Groups
    6. Polymers
    7. End-of-Chapter Material
  24. Chapter 17. Kinetics
    1. Factors that Affect the Rate of Reactions
    2. Reaction Rates
    3. Rate Laws
    4. Concentration–Time Relationships: Integrated Rate Laws
    5. Activation Energy and the Arrhenius Equation
    6. Reaction Mechanisms
    7. Catalysis
    8. End-of-Chapter Material
  25. Chapter 18. Chemical Thermodynamics
    1. Spontaneous Change
    2. Entropy and the Second Law of Thermodynamics
    3. Measuring Entropy and Entropy Changes
    4. Gibbs Free Energy
    5. Spontaneity: Free Energy and Temperature
    6. Free Energy under Nonstandard Conditions
    7. End-of-Chapter Material
  26. Appendix A: Periodic Table of the Elements
  27. Appendix B: Selected Acid Dissociation Constants at 25°C
  28. Appendix C: Solubility Constants for Compounds at 25°C
  29. Appendix D: Standard Thermodynamic Quantities for Chemical Substances at 25°C
  30. Appendix E: Standard Reduction Potentials by Value
  31. Glossary
  32. About the Authors
  33. Versioning History

Spontaneity: Free Energy and Temperature

Jessie A. Key

Learning Objectives

  • To gain an understanding of the relationship between spontaneity, free energy, and temperature.
  • To be able to calculate the temperature at which a process is at equilibrium under standard conditions.

In the Gibbs free energy change equation, the only part we as scientists can control is the temperature. We have seen how we can calculate the standard change in Gibbs free energy, ΔG°, but not all reactions we are interested in occur at exactly 298 K. The temperature plays an important role in determining the Gibbs free energy and spontaneity of a reaction.

\Delta G=\Delta H-T\Delta S

If we examine the Gibbs free energy change equation, we can cluster the components to create two general terms, an enthalpy term, ΔH, and an entropy term, –TΔS. Depending on the sign and magnitude of each, the sum of these terms determines the sign of ΔG and therefore the spontaneity (Table 18.2 “Spontaneity and the Signs of Enthalpy and Entropy Terms”).

Table 18.2 Spontaneity and the Signs of Enthalpy and Entropy Terms
ΔHΔS−TΔSΔGSpontaneity
+−++Nonspontaneous
−+−−Spontaneous
−−++ or −
  • Low temp: Spontaneous
  • High temp: Nonspontaneous
++−+ or −
  • Low temp: Nonspontaneous
  • High temp: Spontaneous

Since all temperature values are positive in the Kelvin scale, the temperature affects the magnitude of the entropy term. As shown in Table 18.2 “Spontaneity and the Signs of Enthalpy and Entropy Terms,” the temperature can be the deciding factor in spontaneity when the enthalpy and entropy terms have opposite signs. If ΔH is negative, and –TΔS positive, the reaction will be spontaneous at low temperatures (decreasing the magnitude of the entropy term). If ΔH is positive, and –TΔS negative, the reaction will be spontaneous at high temperatures (increasing the magnitude of the entropy term).

Sometimes it can be helpful to determine the temperature when ΔG° = 0 and the process is at equilibrium. Knowing this value, we can adjust the temperature to drive the process to spontaneity or alternatively to prevent the process from occurring spontaneously. Remember that, at equilibrium:

\Delta G^{\circ}=0=\Delta H^{\circ}-T\Delta S^{\circ}

We can rearrange and solve for the temperature T:

    \begin{align*} T\Delta S^{\circ}&=\Delta H^{\circ} \\ \\ T&=\dfrac{\Delta H^{\circ}}{\Delta S^{\circ}} \end{align*}

Example 18.6

Using the appendix table of standard thermodynamic quantities, determine the temperature at which the following process is at equilibrium:

\ce{CHCl3(\ell)}\leftrightharpoons \ce{CHCl3(g)}

How does the value you calculated compare to the boiling point of chloroform given in the literature?

Solution

At equilibrium: \Delta G^{\circ}=0=\Delta H^{\circ}-T\Delta S^{\circ}

We must estimate ΔH° and S° from their enthalpies of formation and standard molar entropies, respectively.

    \begin{align*} \Delta H^{\circ}&=\underset{\text{products}}{\sum n\Delta H^{\circ}{}_{\text{f}}}-\underset{\text{reactants}}{\sum m\Delta H^{\circ}{}_{\text{f}}} \\ \Delta H^{\circ}&=-102.7\text{ kJ/mol}-(-134.1\text{ kJ/mol}) \\ \Delta H^{\circ}&=+31.4\text{ kJ/mol} \\ \\ \Delta S^{\circ}&= \underset{\text{products}}{\sum n\Delta S^{\circ}}-\underset{\text{reactants}}{\sum m\Delta S^{\circ}} \\ \Delta S^{\circ}&=295.7\text{ J/mol K}-(201.7\text{ J/mol K}) \\ \Delta S^{\circ}&=94.0\text{ J/mol K (or }94.0\times 10^{-3}\text{ kJ/mol K)} \end{align*}

Now we can use these values to solve for the temperature:

    \begin{align*} T&=\dfrac{\Delta H^{\circ}}{\Delta S^{\circ}} \\ \\ T&=\dfrac{31.4\text{ kJ/mol}}{94.0\times 10^{-3}\text{ kJ/mol K}} \\ \\ T&=334\text{ K}=60.9\celsius \end{align*}

The literature boiling point of chloroform is 61.2°C. The value we have calculated is very close but slightly lower due to the assumption that ΔH° and S° do not change with temperature when we estimate the ΔH° and S° from their enthalpies of formation and standard molar entropies.

Key Takeaways

  • The temperature can be the deciding factor in spontaneity when the enthalpy and entropy terms have opposite signs:
    • If ΔH is negative, and –TΔS positive, the reaction will be spontaneous at low temperatures (decreasing the magnitude of the entropy term).
    • If ΔH is positive, and –TΔS negative, the reaction will be spontaneous at high temperatures (increasing the magnitude of the entropy term).

Icon for the Creative Commons Attribution 4.0 International License

Spontaneity: Free Energy and Temperature by Jessie A. Key is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Annotate

Next Chapter
Free Energy under Nonstandard Conditions
PreviousNext
Chemistry

Copyright © 2014

                                by Jessie A. Key

            Introductory Chemistry - 1st Canadian Edition by Jessie A. Key is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org