Skip to main content

Introductory Chemistry - 1st Canadian Edition: Arrhenius Acids and Bases

Introductory Chemistry - 1st Canadian Edition
Arrhenius Acids and Bases
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Acknowledgments
  6. Dedication
  7. About BCcampus Open Education
  8. Chapter 1. What is Chemistry
    1. Some Basic Definitions
    2. Chemistry as a Science
  9. Chapter 2. Measurements
    1. Expressing Numbers
    2. Significant Figures
    3. Converting Units
    4. Other Units: Temperature and Density
    5. Expressing Units
    6. End-of-Chapter Material
  10. Chapter 3. Atoms, Molecules, and Ions
    1. Acids
    2. Ions and Ionic Compounds
    3. Masses of Atoms and Molecules
    4. Molecules and Chemical Nomenclature
    5. Atomic Theory
    6. End-of-Chapter Material
  11. Chapter 4. Chemical Reactions and Equations
    1. The Chemical Equation
    2. Types of Chemical Reactions: Single- and Double-Displacement Reactions
    3. Ionic Equations: A Closer Look
    4. Composition, Decomposition, and Combustion Reactions
    5. Oxidation-Reduction Reactions
    6. Neutralization Reactions
    7. End-of-Chapter Material
  12. Chapter 5. Stoichiometry and the Mole
    1. Stoichiometry
    2. The Mole
    3. Mole-Mass and Mass-Mass Calculations
    4. Limiting Reagents
    5. The Mole in Chemical Reactions
    6. Yields
    7. End-of-Chapter Material
  13. Chapter 6. Gases
    1. Pressure
    2. Gas Laws
    3. Other Gas Laws
    4. The Ideal Gas Law and Some Applications
    5. Gas Mixtures
    6. Kinetic Molecular Theory of Gases
    7. Molecular Effusion and Diffusion
    8. Real Gases
    9. End-of-Chapter Material
  14. Chapter 7. Energy and Chemistry
    1. Formation Reactions
    2. Energy
    3. Stoichiometry Calculations Using Enthalpy
    4. Enthalpy and Chemical Reactions
    5. Work and Heat
    6. Hess’s Law
    7. End-of-Chapter Material
  15. Chapter 8. Electronic Structure
    1. Light
    2. Quantum Numbers for Electrons
    3. Organization of Electrons in Atoms
    4. Electronic Structure and the Periodic Table
    5. Periodic Trends
    6. End-of-Chapter Material
  16. Chapter 9. Chemical Bonds
    1. Lewis Electron Dot Diagrams
    2. Electron Transfer: Ionic Bonds
    3. Covalent Bonds
    4. Other Aspects of Covalent Bonds
    5. Violations of the Octet Rule
    6. Molecular Shapes and Polarity
    7. Valence Bond Theory and Hybrid Orbitals
    8. Molecular Orbitals
    9. End-of-Chapter Material
  17. Chapter 10. Solids and Liquids
    1. Properties of Liquids
    2. Solids
    3. Phase Transitions: Melting, Boiling, and Subliming
    4. Intermolecular Forces
    5. End-of-Chapter Material
  18. Chapter 11. Solutions
    1. Colligative Properties of Solutions
    2. Concentrations as Conversion Factors
    3. Quantitative Units of Concentration
    4. Colligative Properties of Ionic Solutes
    5. Some Definitions
    6. Dilutions and Concentrations
    7. End-of-Chapter Material
  19. Chapter 12. Acids and Bases
    1. Acid-Base Titrations
    2. Strong and Weak Acids and Bases and Their Salts
    3. Brønsted-Lowry Acids and Bases
    4. Arrhenius Acids and Bases
    5. Autoionization of Water
    6. Buffers
    7. The pH Scale
    8. End-of-Chapter Material
  20. Chapter 13. Chemical Equilibrium
    1. Chemical Equilibrium
    2. The Equilibrium Constant
    3. Shifting Equilibria: Le Chatelier’s Principle
    4. Calculating Equilibrium Constant Values
    5. Some Special Types of Equilibria
    6. End-of-Chapter Material
  21. Chapter 14. Oxidation and Reduction
    1. Oxidation-Reduction Reactions
    2. Balancing Redox Reactions
    3. Applications of Redox Reactions: Voltaic Cells
    4. Electrolysis
    5. End-of-Chapter Material
  22. Chapter 15. Nuclear Chemistry
    1. Units of Radioactivity
    2. Uses of Radioactive Isotopes
    3. Half-Life
    4. Radioactivity
    5. Nuclear Energy
    6. End-of-Chapter Material
  23. Chapter 16. Organic Chemistry
    1. Hydrocarbons
    2. Branched Hydrocarbons
    3. Alkyl Halides and Alcohols
    4. Other Oxygen-Containing Functional Groups
    5. Other Functional Groups
    6. Polymers
    7. End-of-Chapter Material
  24. Chapter 17. Kinetics
    1. Factors that Affect the Rate of Reactions
    2. Reaction Rates
    3. Rate Laws
    4. Concentration–Time Relationships: Integrated Rate Laws
    5. Activation Energy and the Arrhenius Equation
    6. Reaction Mechanisms
    7. Catalysis
    8. End-of-Chapter Material
  25. Chapter 18. Chemical Thermodynamics
    1. Spontaneous Change
    2. Entropy and the Second Law of Thermodynamics
    3. Measuring Entropy and Entropy Changes
    4. Gibbs Free Energy
    5. Spontaneity: Free Energy and Temperature
    6. Free Energy under Nonstandard Conditions
    7. End-of-Chapter Material
  26. Appendix A: Periodic Table of the Elements
  27. Appendix B: Selected Acid Dissociation Constants at 25°C
  28. Appendix C: Solubility Constants for Compounds at 25°C
  29. Appendix D: Standard Thermodynamic Quantities for Chemical Substances at 25°C
  30. Appendix E: Standard Reduction Potentials by Value
  31. Glossary
  32. About the Authors
  33. Versioning History

Arrhenius Acids and Bases

Learning Objectives

  1. Identify an Arrhenius acid and an Arrhenius base.
  2. Write the chemical reaction between an Arrhenius acid and an Arrhenius base.

Historically, the first chemical definition of an acid and a base was put forward by Svante Arrhenius, a Swedish chemist, in 1884. An Arrhenius acid is a compound that increases the H+ ion concentration in aqueous solution. The H+ ion is just a bare proton, and it is rather clear that bare protons are not floating around in an aqueous solution. Instead, chemistry has defined the hydronium ion (H3O+) as the actual chemical species that represents an H+ ion. H+ ions and H3O+ ions are often considered interchangeable when writing chemical equations (although a properly balanced chemical equation should also include the additional H2O). Classic Arrhenius acids can be considered ionic compounds in which H+ is the cation. Table 12.2 “Some Arrhenius Acids” lists some Arrhenius acids and their names.

Table 12.2 Some Arrhenius Acids
FormulaName
HC2H3O2 (also written CH3COOH)acetic acid
HClO3chloric acid
HClhydrochloric acid
HBrhydrobromic acid
HIhydriodic acid
HFhydrofluoric acid
HNO3nitric acid
H2C2O4oxalic acid
HClO4perchloric acid
H3PO4phosphoric acid
H2SO4sulfuric acid
H2SO3sulfurous acid

An Arrhenius base is a compound that increases the OH− ion concentration in aqueous solution. Ionic compounds of the OH− ion are classic Arrhenius bases.

Example 12.7

Identify each compound as an Arrhenius acid, an Arrhenius base, or neither.

  1. HNO3
  2. CH3OH
  3. Mg(OH)2

Solution

  1. This compound is an ionic compound between H+ ions and NO3− ions, so it is an Arrhenius acid.
  2. Although this formula has an OH in it, we do not recognize the remaining part of the molecule as a cation. It is neither an acid nor a base. (In fact, it is the formula for methanol, an organic compound.)
  3. This formula also has an OH in it, but this time we recognize that the magnesium is present as Mg2+ cations. As such, this is an ionic compound of the OH− ion and is an Arrhenius base.

Test Yourself
Identify each compound as an Arrhenius acid, an Arrhenius base, or neither.

  1. KOH
  2. H2SO4
  3. C2H6

Answer

  1. Arrhenius base
  2. Arrhenius acid
  3. neither

Acids have some properties in common. They turn litmus, a plant extract, red. They react with some metals to give off H2 gas. They react with carbonate and hydrogen carbonate salts to give off CO2 gas. Acids that are ingested typically have a sour, sharp taste. (The name acid comes from the Latin word acidus, meaning “sour.”) Bases also have some properties in common. They are slippery to the touch, turn litmus blue, and have a bitter flavour if ingested.

Acids and bases have another property: they react with each other to make water and an ionic compound called a salt. A salt, in chemistry, is any ionic compound made by combining an acid with a base. A reaction between an acid and a base is called a neutralization reaction and can be represented as follows:

acid + base → H2O + salt

The stoichiometry of the balanced chemical equation depends on the number of H+ ions in the acid and the number of OH− ions in the base.

Example 12.8

Write the balanced chemical equation for the neutralization reaction between H2SO4 and KOH. What is the name of the salt that is formed?

Solution
The general reaction is as follows:

H2SO4 + KOH → H2O + salt

Because the acid has two H+ ions in its formula, we need two OH− ions to react with it, making two H2O molecules as product. The remaining ions, K+ and SO42−, make the salt potassium sulfate (K2SO4). The balanced chemical reaction is as follows:

H2SO4 + 2KOH → 2H2O + K2SO4

Test Yourself
Write the balanced chemical equation for the neutralization reaction between HCl and Mg(OH)2. What is the name of the salt that is formed?

Answer
2HCl + Mg(OH)2 → 2 H2O + MgCl2; magnesium chloride

Key Takeaways

  • An Arrhenius acid is a compound that increases the H+ ion concentration in aqueous solution.
  • An Arrhenius base is a compound that increases the OH− ion concentration in aqueous solution.
  • The reaction between an Arrhenius acid and an Arrhenius base is called neutralization and results in the formation of water and a salt.

Exercises

Questions

  1. Define Arrhenius acid.
  2. Define Arrhenius base.
  3. What are some general properties of Arrhenius acids?
  4. What are some general properties of Arrhenius bases?
  5. Identify each substance as an Arrhenius acid, an Arrhenius base, or neither.
    1. NaOH
    2. C2H5OH
    3. H3PO4
  6. Identify each substance as an Arrhenius acid, an Arrhenius base, or neither.
    1. C6H12O6
    2. HNO2
    3. Ba(OH)2
  7. Write the balanced chemical equation for the neutralization reaction between KOH and H2C2O4. What is the salt?
  8. Write the balanced chemical equation for the neutralization reaction between Sr(OH)2 and H3PO4. What is the salt?
  9. Write the balanced chemical equation for the neutralization reaction between HCl and Fe(OH)3. What is the salt?
  10. Write the balanced chemical equation for the neutralization reaction between H2SO4 and Cr(OH)3. What is the salt?
  11. CaCl2 would be the product of the reaction of what acid and what base?
  12. Zn(NO3)2 would be product of the reaction of what acid and what base?
  13. BaSO4 would be product of the reaction of what acid and what base?
  14. Na3PO4 would be product of the reaction of what acid and what base?

Answers

  1. A compound that increases the H+ concentration in water.
  1. Sour taste, react with metals, and turn litmus red
    1. Arrhenius base
    2. neither
    3. Arrhenius acid
  1. 2KOH + H2C2O4 → 2H2O + K2C2O4; K2C2O4
  1. 3HCl + Fe(OH)3 → 3H2O + FeCl3; FeCl3
  1. HCl and Ca(OH)2
  1. H2SO4 and Ba(OH)2

Annotate

Next Chapter
Autoionization of Water
PreviousNext
Chemistry

Copyright © 2014

                                by Jessie A. Key

            Introductory Chemistry - 1st Canadian Edition by Jessie A. Key is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org