Skip to main content

Boundless Biology: 23.1: Eukaryotic Origins

Boundless Biology
23.1: Eukaryotic Origins
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. 1: The Study of Life
    1. 1.1: The Science of Biology
      1. 1.1.0: Introduction to the Study of Biology
      2. 1.1.1: Scientific Reasoning
      3. 1.1.2: The Scientific Method
      4. 1.1.3: Basic and Applied Science
      5. 1.1.4: Publishing Scientific Work
      6. 1.1.5: Branches and Subdisciplines of Biology
    2. 1.2: Themes and Concepts of Biology
      1. 1.2.0: Properties of Life
      2. 1.2.1: Levels of Organization of Living Things
      3. 1.2.2: The Diversity of Life
  2. 2: The Chemical Foundation of Life
    1. 2.1: Atoms, Isotopes, Ions, and Molecules
      1. 2.1.0: Overview of Atomic Structure
      2. 2.1.1: Atomic Number and Mass Number
      3. 2.1.2: Isotopes
      4. 2.1.3: The Periodic Table
      5. 2.1.4: Electron Shells and the Bohr Model
      6. 2.1.5: Electron Orbitals
      7. 2.1.6: Chemical Reactions and Molecules
      8. 2.1.7: Ions and Ionic Bonds
      9. 2.1.8: Covalent Bonds and Other Bonds and Interactions
      10. 2.1.9: Hydrogen Bonding and Van der Waals Forces
    2. 2.2: Water
      1. 2.2.0: Water’s Polarity
      2. 2.2.1: Water’s States: Gas, Liquid, and Solid
      3. 2.2.2: Water’s High Heat Capacity
      4. 2.2.3: Water’s Heat of Vaporization
      5. 2.2.4: Water’s Solvent Properties
      6. 2.2.5: Water’s Cohesive and Adhesive Properties
      7. 2.2.6: pH, Buffers, Acids, and Bases
    3. 2.3: Carbon
      1. 2.3.0: The Chemical Basis for Life
      2. 2.3.1: Hydrocarbons
      3. 2.3.2: Organic Isomers
      4. 2.3.3: Organic Enantiomers
      5. 2.3.4: Organic Molecules and Functional Groups
  3. 3: Biological Macromolecules
    1. 3.1: Synthesis of Biological Macromolecules
      1. 3.1.0: Types of Biological Macromolecules
      2. 3.1.1: Dehydration Synthesis
      3. 3.1.2: Hydrolysis
    2. 3.2: Carbohydrates
      1. 3.2.0: Carbohydrate Molecules
      2. 3.2.1: Importance of Carbohydrates
    3. 3.3: Lipids
      1. 3.3.0: Lipid Molecules
      2. 3.3.1: Waxes
      3. 3.3.2: Phospholipids
      4. 3.3.3: Steroids
    4. 3.4: Proteins
      1. 3.4.0: Types and Functions of Proteins
      2. 3.4.1: Amino Acids
      3. 3.4.2: Protein Structure
      4. 3.4.3: Denaturation and Protein Folding
    5. 3.5: Nucleic Acids
      1. 3.5.0: DNA and RNA
      2. 3.5.1: The DNA Double Helix
      3. 3.5.2: DNA Packaging
      4. 3.5.3: Types of RNA
  4. 4: Cell Structure
    1. 4.1: Studying Cells
      1. 4.1.0: Cells as the Basic Unit of Life
      2. 4.1.1: Microscopy
      3. 4.1.2: Cell Theory
      4. 4.1.3: Cell Size
    2. 4.2: Prokaryotic Cells
      1. 4.2.0: Characteristics of Prokaryotic Cells
    3. 4.3: Eukaryotic Cells
      1. 4.3.0: Characteristics of Eukaryotic Cells
      2. 4.3.1: The Plasma Membrane and the Cytoplasm
      3. 4.3.2: The Nucleus and Ribosomes
      4. 4.3.3: Mitochondria
      5. 4.3.4: Comparing Plant and Animal Cells
    4. 4.4: The Endomembrane System and Proteins
      1. 4.4.0: Vesicles and Vacuoles
      2. 4.4.1: The Endoplasmic Reticulum
      3. 4.4.2: The Golgi Apparatus
      4. 4.4.3: Lysosomes
      5. 4.4.4: Peroxisomes
    5. 4.5: The Cytoskeleton
      1. 4.5.0: Microfilaments
      2. 4.5.1: Intermediate Filaments and Microtubules
    6. 4.6: Connections between Cells and Cellular Activities
      1. 4.6.0: Extracellular Matrix of Animal Cells
      2. 4.6.1: Intercellular Junctions
  5. 5: Structure and Function of Plasma Membranes
    1. 5.1: Components and Structure
      1. 5.1.0: Components of Plasma Membranes
      2. 5.1.1: Fluid Mosaic Model
      3. 5.1.2: Membrane Fluidity
    2. 5.2: Passive Transport
      1. 5.2.0: The Role of Passive Transport
      2. 5.2.1: Selective Permeability
      3. 5.2.2: Diffusion
      4. 5.2.3: Facilitated transport
      5. 5.2.4: Osmosis
      6. 5.2.5: Tonicity
      7. 5.2.6: Osmoregulation
    3. 5.3: Active Transport
      1. 5.3.0: Electrochemical Gradient
      2. 5.3.1: Primary Active Transport
      3. 5.3.2: Secondary Active Transport
    4. 5.4: Bulk Transport
      1. 5.4.0: Endocytosis
      2. 5.4.1: Exocytosis
  6. 6: Metabolism
    1. 6.1: Energy and Metabolism
      1. 6.1.0: The Role of Energy and Metabolism
      2. 6.1.1: Types of Energy
      3. 6.1.2: Metabolic Pathways
      4. 6.1.3: Metabolism of Carbohydrates
    2. 6.2: Potential, Kinetic, Free, and Activation Energy
      1. 6.2.0: Free Energy
      2. 6.2.1: The First Law of Thermodynamics
      3. 6.2.2: The Second Law of Thermodynamics
      4. 6.2.3: Activation Energy
    3. 6.3: ATP: Adenosine Triphosphate
      1. 6.3.0: ATP: Adenosine Triphosphate
    4. 6.4: Enzymes
      1. 6.4.0: Enzyme Active Site and Substrate Specificity
      2. 6.4.1: Control of Metabolism Through Enzyme Regulation
  7. 7: Cellular Respiration
    1. 7.1: Energy in Living Systems
      1. 7.1.0: Transforming Chemical Energy
      2. 7.1.1: Electrons and Energy
      3. 7.1.2: ATP in Metabolism
    2. 7.2: Glycolysis
      1. 7.2.0: Importance of Glycolysis
      2. 7.2.1: The Energy-Requiring Steps of Glycolysis
      3. 7.2.2: The Energy-Releasing Steps of Glycolysis
      4. 7.2.3: Outcomes of Glycolysis
    3. 7.3: Oxidation of Pyruvate and the Citric Acid Cycle
      1. 7.3.0: Breakdown of Pyruvate
      2. 7.3.1: Acetyl CoA to CO2
      3. 7.3.2: Citric Acid Cycle
    4. 7.4: Oxidative Phosphorylation
      1. 7.4.0: Electron Transport Chain
      2. 7.4.1: Chemiosmosis and Oxidative Phosphorylation
      3. 7.4.2: ATP Yield
    5. 7.5: Metabolism without Oxygen
      1. 7.5.0: Anaerobic Cellular Respiration
    6. 7.6: Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      1. 7.6.0: Connecting Other Sugars to Glucose Metabolism
      2. 7.6.1: Connecting Proteins to Glucose Metabolism
      3. 7.6.2: Connecting Lipids to Glucose Metabolism
    7. 7.7: Regulation of Cellular Respiration
      1. 7.7.0: Regulatory Mechanisms for Cellular Respiration
      2. 7.7.1: Control of Catabolic Pathways
  8. 8: Photosynthesis
    1. 8.1: Overview of Photosynthesis
      1. 8.1.0: The Purpose and Process of Photosynthesis
      2. 8.1.1: Main Structures and Summary of Photosynthesis
      3. 8.1.2: The Two Parts of Photosynthesis
    2. 8.2: The Light-Dependent Reactions of Photosynthesis
      1. 8.2.0: Introduction to Light Energy
      2. 8.2.1: Absorption of Light
      3. 8.2.2: Processes of the Light-Dependent Reactions
    3. 8.3: The Light-Independent Reactions of Photosynthesis
      1. 8.3.0: CAM and C4 Photosynthesis
      2. 8.3.1: The Calvin Cycle
      3. 8.3.2: The Carbon Cycle
  9. 9: Cell Communication
    1. 9.1: Signaling Molecules and Cellular Receptors
      1. 9.1.0: Signaling Molecules and Cellular Receptors
      2. 9.1.1: Forms of Signaling
      3. 9.1.2: Types of Receptors
      4. 9.1.3: Signaling Molecules
    2. 9.2: Propagation of the Cellular Signal
      1. 9.2.0: Binding Initiates a Signaling Pathway
      2. 9.2.1: Methods of Intracellular Signaling
    3. 9.3: Response to the Cellular Signal
      1. 9.3.0: Termination of the Signal Cascade
      2. 9.3.1: Cell Signaling and Gene Expression
      3. 9.3.2: Cell Signaling and Cellular Metabolism
      4. 9.3.3: Cell Signaling and Cell Growth
      5. 9.3.4: Cell Signaling and Cell Death
    4. 9.4: Signaling in Single-Celled Organisms
      1. 9.4.0: Signaling in Yeast
      2. 9.4.1: Signaling in Bacteria
  10. 10: Cell Reproduction
    1. 10.1: Cell Division
      1. 10.1.0: The Role of the Cell Cycle
      2. 10.1.1: Genomic DNA and Chromosomes
      3. 10.1.2: Eukaryotic Chromosomal Structure and Compaction
    2. 10.2: The Cell Cycle
      1. 10.2.0: Interphase
      2. 10.2.1: The Mitotic Phase and the G0 Phase
    3. 10.3: Control of the Cell Cycle
      1. 10.3.0: Regulation of the Cell Cycle by External Events
      2. 10.3.1: Regulation of the Cell Cycle at Internal Checkpoints
      3. 10.3.2: Regulator Molecules of the Cell Cycle
    4. 10.4: Cancer and the Cell Cycle
      1. 10.4.0: Proto-oncogenes
      2. 10.4.1: Tumor Suppressor Genes
    5. 10.5: Prokaryotic Cell Division
      1. 10.5.0: Binary Fission
  11. 11: Meiosis and Sexual Reproduction
    1. 11.1: The Process of Meiosis
      1. 11.1.0: Introduction to Meiosis
      2. 11.1.1: Meiosis I
      3. 11.1.2: Meiosis II
      4. 11.1.3: Comparing Meiosis and Mitosis
    2. 11.2: Sexual Reproduction
      1. 11.2.0: Advantages and Disadvantages of Sexual Reproduction
      2. 11.2.1: Life Cycles of Sexually Reproducing Organisms
  12. 12: Mendel's Experiments and Heredity
    1. 12.1: Mendel’s Experiments and the Laws of Probability
      1. 12.1.0: Introduction to Mendelian Inheritance
      2. 12.1.1: Mendel’s Model System
      3. 12.1.2: Mendelian Crosses
      4. 12.1.3: Garden Pea Characteristics Revealed the Basics of Heredity
      5. 12.1.4: Rules of Probability for Mendelian Inheritance
    2. 12.2: Patterns of Inheritance
      1. 12.2.0: Genes as the Unit of Heredity
      2. 12.2.1: Phenotypes and Genotypes
      3. 12.2.2: The Punnett Square Approach for a Monohybrid Cross
      4. 12.2.3: Alternatives to Dominance and Recessiveness
      5. 12.2.4: Sex-Linked Traits
      6. 12.2.5: Lethal Inheritance Patterns
    3. 12.3: Laws of Inheritance
      1. 12.3.0: Mendel's Laws of Heredity
      2. 12.3.1: Mendel's Law of Dominance
      3. 12.3.2: Mendel's Law of Segregation
      4. 12.3.3: Mendel's Law of Independent Assortment
      5. 12.3.4: Genetic Linkage and Violation of the Law of Independent Assortment
      6. 12.3.5: Epistasis
  13. 13: Modern Understandings of Inheritance
    1. 13.1: Chromosomal Theory and Genetic Linkage
      1. 13.1.0: Chromosomal Theory of Inheritance
      2. 13.1.1: Genetic Linkage and Distances
      3. 13.1.2: Identification of Chromosomes and Karyotypes
    2. 13.2: Chromosomal Basis of Inherited Disorders
      1. 13.2.0: Disorders in Chromosome Number
      2. 13.2.1: Chromosomal Structural Rearrangements
      3. 13.2.2: X-Inactivation
  14. 14: DNA Structure and Function
    1. 14.1: Historical Basis of Modern Understanding
      1. 14.1.0: Discovery of DNA
      2. 14.1.1: Modern Applications of DNA
    2. 14.2: DNA Structure and Sequencing
      1. 14.2.0: The Structure and Sequence of DNA
      2. 14.2.1: DNA Sequencing Techniques
    3. 14.3: DNA Replication
      1. 14.3.0: Basics of DNA Replication
      2. 14.3.1: DNA Replication in Prokaryotes
      3. 14.3.2: DNA Replication in Eukaryotes
      4. 14.3.3: Telomere Replication
    4. 14.4: DNA Repair
      1. 14.4.0: DNA Repair
  15. 15: Genes and Proteins
    1. 15.1: The Genetic Code
      1. 15.1.0: The Relationship Between Genes and Proteins
      2. 15.1.1: The Central Dogma: DNA Encodes RNA and RNA Encodes Protein
    2. 15.2: Prokaryotic Transcription
      1. 15.2.0: Transcription in Prokaryotes
      2. 15.2.1: Initiation of Transcription in Prokaryotes
      3. 15.2.2: Elongation and Termination in Prokaryotes
    3. 15.3: Eukaryotic Transcription
      1. 15.3.0: Initiation of Transcription in Eukaryotes
      2. 15.3.1: Elongation and Termination in Eukaryotes
    4. 15.4: RNA Processing in Eukaryotes
      1. 15.4.0: mRNA Processing
      2. 15.4.1: Processing of tRNAs and rRNAs
    5. 15.5: Ribosomes and Protein Synthesis
      1. 15.5.0: The Protein Synthesis Machinery
      2. 15.5.1: The Mechanism of Protein Synthesis
      3. 15.5.2: Protein Folding, Modification, and Targeting
  16. 16: Gene Expression
    1. 16.1: Regulation of Gene Expression
      1. 16.1.0: The Process and Purpose of Gene Expression Regulation
      2. 16.1.1: Prokaryotic versus Eukaryotic Gene Expression
    2. 16.2: Prokaryotic Gene Regulation
      1. 16.2.0: The trp Operon: A Repressor Operon
      2. 16.2.1: Catabolite Activator Protein (CAP): An Activator Regulator
      3. 16.2.2: The lac Operon: An Inducer Operon
    3. 16.3: Eukaryotic Gene Regulation
      1. 16.3.0: The Promoter and the Transcription Machinery
      2. 16.3.1: Transcriptional Enhancers and Repressors
      3. 16.3.2: Epigenetic Control: Regulating Access to Genes within the Chromosome
      4. 16.3.3: RNA Splicing
      5. 16.3.4: The Initiation Complex and Translation Rate
      6. 16.3.5: Regulating Protein Activity and Longevity
    4. 16.4: Regulating Gene Expression in Cell Development
      1. 16.4.0: Gene Expression in Stem Cells
      2. 16.4.1: Cellular Differentiation
      3. 16.4.2: Mechanics of Cellular Differentation
      4. 16.4.3: Establishing Body Axes during Development
      5. 16.4.4: Gene Expression for Spatial Positioning
      6. 16.4.5: Cell Migration in Multicellular Organisms
      7. 16.4.6: Programmed Cell Death
    5. 16.5: Cancer and Gene Regulation
      1. 16.5.0: Altered Gene Expression in Cancer
      2. 16.5.1: Epigenetic Alterations in Cancer
      3. 16.5.2: Cancer and Transcriptional Control
      4. 16.5.3: Cancer and Post-Transcriptional Control
      5. 16.5.4: Cancer and Translational Control
  17. 17: Biotechnology and Genomics
    1. 17.1: Biotechnology
      1. 17.1.0: Biotechnology
      2. 17.1.1: Basic Techniques to Manipulate Genetic Material (DNA and RNA)
      3. 17.1.2: Molecular and Cellular Cloning
      4. 17.1.3: Reproductive Cloning
      5. 17.1.4: Genetic Engineering
      6. 17.1.5: Genetically Modified Organisms (GMOs)
      7. 17.1.6: Biotechnology in Medicine
      8. 17.1.7: Production of Vaccines, Antibiotics, and Hormones
    2. 17.2: Mapping Genomes
      1. 17.2.0: Genetic Maps
      2. 17.2.1: Physical Maps and Integration with Genetic Maps
    3. 17.3: Whole-Genome Sequencing
      1. 17.3.0: Strategies Used in Sequencing Projects
      2. 17.3.1: Use of Whole-Genome Sequences of Model Organisms
      3. 17.3.2: Uses of Genome Sequences
    4. 17.4: Applying Genomics
      1. 17.4.0: Predicting Disease Risk at the Individual Level
      2. 17.4.1: Pharmacogenomics, Toxicogenomics, and Metagenomics
      3. 17.4.2: Genomics and Biofuels
    5. 17.5: Genomics and Proteomics
      1. 17.5.0: Genomics and Proteomics
      2. 17.5.1: Basic Techniques in Protein Analysis
      3. 17.5.2: Cancer Proteomics
  18. 18: Evolution and the Origin of Species
    1. 18.1: Understanding Evolution
      1. 18.1.0: What is Evolution?
      2. 18.1.1: Charles Darwin and Natural Selection
      3. 18.1.2: The Galapagos Finches and Natural Selection
      4. 18.1.3: Processes and Patterns of Evolution
      5. 18.1.4: Evidence of Evolution
      6. 18.1.5: Misconceptions of Evolution
    2. 18.2: Formation of New Species
      1. 18.2.0: The Biological Species Concept
      2. 18.2.1: Reproductive Isolation
      3. 18.2.2: Speciation
      4. 18.2.3: Allopatric Speciation
      5. 18.2.4: Sympatric Speciation
    3. 18.3: Hybrid Zones and Rates of Speciation
      1. 18.3.0: Hybrid Zones
      2. 18.3.1: Varying Rates of Speciation
    4. 18.4: Evolution of Genomes
      1. 18.4.0: Genomic Similiarities between Distant Species
      2. 18.4.1: Genome Evolution
      3. 18.4.2: Whole-Genome Duplication
      4. 18.4.3: Gene Duplications and Divergence
      5. 18.4.4: Noncoding DNA
      6. 18.4.5: Variations in Size and Number of Genes
    5. 18.5: Evidence of Evolution
      1. 18.5.0: The Fossil Record as Evidence for Evolution
      2. 18.5.1: Fossil Formation
      3. 18.5.2: Gaps in the Fossil Record
      4. 18.5.3: Carbon Dating and Estimating Fossil Age
      5. 18.5.4: The Fossil Record and the Evolution of the Modern Horse
      6. 18.5.5: Homologous Structures
      7. 18.5.6: Convergent Evolution
      8. 18.5.7: Vestigial Structures
      9. 18.5.8: Biogeography and the Distribution of Species
  19. 19: The Evolution of Populations
    1. 19.1: Population Evolution
      1. 19.1.0: Defining Population Evolution
      2. 19.1.1: Population Genetics
      3. 19.1.2: Hardy-Weinberg Principle of Equilibrium
    2. 19.2: Population Genetics
      1. 19.2.0: Genetic Variation
      2. 19.2.1: Genetic Drift
      3. 19.2.2: Gene Flow and Mutation
      4. 19.2.3: Nonrandom Mating and Environmental Variance
    3. 19.3: Adaptive Evolution
      1. 19.3.0: Natural Selection and Adaptive Evolution
      2. 19.3.1: Stabilizing, Directional, and Diversifying Selection
      3. 19.3.2: Frequency-Dependent Selection
      4. 19.3.3: Sexual Selection
      5. 19.3.4: No Perfect Organism
  20. 20: Phylogenies and the History of Life
    1. 20.1: Organizing Life on Earth
      1. 20.1.0: Phylogenetic Trees
      2. 20.1.1: Limitations of Phylogenetic Trees
      3. 20.1.2: The Levels of Classification
    2. 20.2: Determining Evolutionary Relationships
      1. 20.2.0: Distinguishing between Similar Traits
      2. 20.2.1: Building Phylogenetic Trees
    3. 20.3: Perspectives on the Phylogenetic Tree
      1. 20.3.0: Limitations to the Classic Model of Phylogenetic Trees
      2. 20.3.1: Horizontal Gene Transfer
      3. 20.3.2: Endosymbiotic Theory and the Evolution of Eukaryotes
      4. 20.3.3: Web, Network, and Ring of Life Models
  21. 21: Viruses
    1. 21.1: Viral Evolution, Morphology, and Classification
      1. 21.1.0: Discovery and Detection of Viruses
      2. 21.1.1: Evolution of Viruses
      3. 21.1.2: Viral Morphology
      4. 21.1.3: Virus Classification
    2. 21.2: Virus Infections and Hosts
      1. 21.2.0: Steps of Virus Infections
      2. 21.2.1: The Lytic and Lysogenic Cycles of Bacteriophages
      3. 21.2.2: Animal Viruses
      4. 21.2.3: Plant Viruses
    3. 21.3: Prevention and Treatment of Viral Infections
      1. 21.3.0: Vaccines and Immunity
      2. 21.3.1: Vaccines and Anti-Viral Drugs for Treatment
    4. 21.4: Prions and Viroids
      1. 21.4.0: Prions and Viroids
  22. 22: Prokaryotes: Bacteria and Archaea
    1. 22.1: Prokaryotic Diversity
      1. 22.1.0: Classification of Prokaryotes
      2. 22.1.1: The Origins of Archaea and Bacteria
      3. 22.1.2: Extremophiles and Biofilms
    2. 22.2: Structure of Prokaryotes
      1. 22.2.0: Basic Structures of Prokaryotic Cells
      2. 22.2.1: Prokaryotic Reproduction
    3. 22.3: Prokaryotic Metabolism
      1. 22.3.0: Energy and Nutrient Requirements for Prokaryotes
      2. 22.3.1: The Role of Prokaryotes in Ecosystems
    4. 22.4: Bacterial Diseases in Humans
      1. 22.4.0: History of Bacterial Diseases
      2. 22.4.1: Biofilms and Disease
      3. 22.4.2: Antibiotics: Are We Facing a Crisis?
      4. 22.4.3: Bacterial Foodborne Diseases
    5. 22.5: Beneficial Prokaryotes
      1. 22.5.0: Symbiosis between Bacteria and Eukaryotes
      2. 22.5.1: Early Biotechnology: Cheese, Bread, Wine, Beer, and Yogurt
      3. 22.5.2: Prokaryotes and Environmental Bioremediation
  23. 23: Protists
    1. 23.1: Eukaryotic Origins
      1. 23.1.0: Early Eukaryotes
      2. 23.1.1: Characteristics of Eukaryotic DNA
      3. 23.1.2: Endosymbiosis and the Evolution of Eukaryotes
      4. 23.1.3: The Evolution of Mitochondria
      5. 23.1.4: The Evolution of Plastids
    2. 23.2: Characteristics of Protists
      1. 23.2.0: Cell Structure, Metabolism, and Motility
      2. 23.2.1: Protist Life Cycles and Habitats
    3. 23.3: Groups of Protists
      1. 23.3.0: Excavata
      2. 23.3.1: Chromalveolata: Alveolates
      3. 23.3.2: Chromalveolata: Stramenopiles
      4. 23.3.3: Rhizaria
      5. 23.3.4: Archaeplastida
      6. 23.3.5: Amoebozoa and Opisthokonta
    4. 23.4: Ecology of Protists
      1. 23.4.0: Protists as Primary Producers, Food Sources, and Symbionts
      2. 23.4.1: Protists as Human Pathogens
      3. 23.4.2: Protists as Plant Pathogens
  24. 24: Fungi
    1. 24.1: Characteristics of Fungi
      1. 24.1.0: Characteristics of Fungi
      2. 24.1.1: Fungi Cell Structure and Function
      3. 24.1.2: Fungi Reproduction
    2. 24.2: Ecology of Fungi
      1. 24.2.0: Fungi Habitat, Decomposition, and Recycling
      2. 24.2.1: Mutualistic Relationships with Fungi and Fungivores
    3. 24.3: Classifications of Fungi
      1. 24.3.0: Chytridiomycota: The Chytrids
      2. 24.3.1: Zygomycota: The Conjugated Fungi
      3. 24.3.2: Ascomycota: The Sac Fungi
      4. 24.3.3: Basidiomycota: The Club Fungi
      5. 24.3.4: Deuteromycota: The Imperfect Fungi
      6. 24.3.5: Glomeromycota
    4. 24.4: Fungal Parasites and Pathogens
      1. 24.4.0: Fungi as Plant, Animal, and Human Pathogens
    5. 24.5: Importance of Fungi in Human Life
      1. 24.5.0: Importance of Fungi in Human Life
  25. 25: Seedless Plants
    1. 25.1: Early Plant Life
      1. 25.1.0: Early Plant Life
      2. 25.1.1: Evolution of Land Plants
      3. 25.1.2: Plant Adaptations to Life on Land
      4. 25.1.3: Sporophytes and Gametophytes in Seedless Plants
      5. 25.1.4: Structural Adaptations for Land in Seedless Plants
      6. 25.1.5: The Major Divisions of Land Plants
    2. 25.2: Green Algae: Precursors of Land Plants
      1. 25.2.0: Streptophytes and Reproduction of Green Algae
      2. 25.2.1: Charales
    3. 25.3: Bryophytes
      1. 25.3.0: Bryophytes
      2. 25.3.1: Liverworts and Hornworts
      3. 25.3.2: Mosses
    4. 25.4: Seedless Vascular Plants
      1. 25.4.0: Seedless Vascular Plants
      2. 25.4.1: Vascular Tissue: Xylem and Phloem
      3. 25.4.2: The Evolution of Roots in Seedless Plants
      4. 25.4.3: Ferns and Other Seedless Vascular Plants
      5. 25.4.4: The Importance of Seedless Vascular Plants
  26. 26: Seed Plants
    1. 26.1: Evolution of Seed Plants
      1. 26.1.0: The Evolution of Seed Plants and Adaptations for Land
      2. 26.1.1: Evolution of Gymnosperms
      3. 26.1.2: Evolution of Angiosperms
    2. 26.2: Gymnosperms
      1. 26.2.0: Characteristics of Gymnosperms
      2. 26.2.1: Life Cycle of a Conifer
      3. 26.2.2: Diversity of Gymnosperms
    3. 26.3: Angiosperms
      1. 26.3.0: Angiosperm Flowers
      2. 26.3.1: Angsiosperm Fruit
      3. 26.3.2: The Life Cycle of an Angiosperm
      4. 26.3.3: Diversity of Angiosperms
    4. 26.4: The Role of Seed Plants
      1. 26.4.0: Herbivory and Pollination
      2. 26.4.1: The Importance of Seed Plants in Human Life
      3. 26.4.2: Biodiversity of Plants
  27. 27: Introduction to Animal Diversity
    1. 27.1: Features of the Animal Kingdom
      1. 27.1.0: Characteristics of the Animal Kingdom
      2. 27.1.1: Complex Tissue Structure
      3. 27.1.2: Animal Reproduction and Development
    2. 27.2: Features Used to Classify Animals
      1. 27.2.0: Animal Characterization Based on Body Symmetry
      2. 27.2.1: Animal Characterization Based on Features of Embryological Development
    3. 27.3: Animal Phylogeny
      1. 27.3.0: Constructing an Animal Phylogenetic Tree
      2. 27.3.1: Molecular Analyses and Modern Phylogenetic Trees
    4. 27.4: The Evolutionary History of the Animal Kingdom
      1. 27.4.0: Pre-Cambrian Animal Life
      2. 27.4.1: The Cambrian Explosion of Animal Life
      3. 27.4.2: Post-Cambrian Evolution and Mass Extinctions
  28. 28: Invertebrates
    1. 28.1: Phylum Porifera
      1. 28.1.0: Phylum Porifera
      2. 28.1.1: Morphology of Sponges
      3. 28.1.2: Physiological Processes in Sponges
    2. 28.2: Phylum Cnidaria
      1. 28.2.0: Phylum Cnidaria
      2. 28.2.1: Class Anthozoa
      3. 28.2.2: Class Scyphozoa
      4. 28.2.3: Class Cubozoa and Class Hydrozoa
    3. 28.3: Superphylum Lophotrochozoa
      1. 28.3.0: Superphylum Lophotrochozoa
      2. 28.3.1: Phylum Platyhelminthes
      3. 28.3.2: Phylum Rotifera
      4. 28.3.3: Phylum Nemertea
      5. 28.3.4: Phylum Mollusca
      6. 28.3.5: Classification of Phylum Mollusca
      7. 28.3.6: Phylum Annelida
    4. 28.4: Superphylum Ecdysozoa
      1. 28.4.0: Superphylum Ecdysozoa
      2. 28.4.1: Phylum Nematoda
      3. 28.4.2: Phylum Arthropoda
      4. 28.4.3: Subphyla of Arthropoda
    5. 28.5: Superphylum Deuterostomia
      1. 28.5.0: Phylum Echinodermata
      2. 28.5.1: Classes of Echinoderms
      3. 28.5.2: Phylum Chordata
  29. 29: Vertebrates
    1. 29.1: Chordates
      1. 29.1.0: Characteristics of Chordata
      2. 29.1.1: Chordates and the Evolution of Vertebrates
      3. 29.1.2: The Evolution of Craniata and Vertebrata
      4. 29.1.3: Characteristics of Vertebrates
    2. 29.2: Fishes
      1. 29.2.0: Agnathans: Jawless Fishes
      2. 29.2.1: Gnathostomes: Jawed Fishes
    3. 29.3: Amphibians
      1. 29.3.0: Characteristics and Evolution of Amphibians
      2. 29.3.1: Modern Amphibians
    4. 29.4: Reptiles
      1. 29.4.0: Characteristics of Amniotes
      2. 29.4.1: Evolution of Amniotes
      3. 29.4.2: Characteristics of Reptiles
      4. 29.4.3: Evolution of Reptiles
      5. 29.4.4: Modern Reptiles
    5. 29.5: Birds
      1. 29.5.0: Characteristics of Birds
      2. 29.5.1: Evolution of Birds
    6. 29.6: Mammals
      1. 29.6.0: Characteristics of Mammals
      2. 29.6.1: Evolution of Mammals
      3. 29.6.2: Living Mammals
    7. 29.7: The Evolution of Primates
      1. 29.7.0: Characteristics and Evolution of Primates
      2. 29.7.1: Early Human Evolution
      3. 29.7.2: Early Hominins
      4. 29.7.3: Genus Homo
  30. 30: Plant Form and Physiology
    1. 30.1: The Plant Body
      1. 30.1.0: Plant Tissues and Organ Systems
    2. 30.2: Stems
      1. 30.2.0: Functions of Stems
      2. 30.2.1: Stem Anatomy
      3. 30.2.2: Primary and Secondary Growth in Stems
      4. 30.2.3: Stem Modifications
    3. 30.3: Roots
      1. 30.3.0: Types of Root Systems and Zones of Growth
      2. 30.3.1: Root Modifications
    4. 30.4: Leaves
      1. 30.4.0: Leaf Structure and Arrangment
      2. 30.4.1: Types of Leaf Forms
      3. 30.4.2: Leaf Structure, Function, and Adaptation
    5. 30.5: Plant Development
      1. 30.5.0: Meristems
      2. 30.5.1: Genetic Control of Flowers
    6. 30.6: Transport of Water and Solutes in Plants
      1. 30.6.0: Water and Solute Potential
      2. 30.6.1: Pressure, Gravity, and Matric Potential
      3. 30.6.2: Movement of Water and Minerals in the Xylem
      4. 30.6.3: Transportation of Photosynthates in the Phloem
    7. 30.7: Plant Sensory Systems and Responses
      1. 30.7.0: Plant Responses to Light
      2. 30.7.1: The Phytochrome System and Red Light Response
      3. 30.7.2: Blue Light Response
      4. 30.7.3: Plant Responses to Gravity
      5. 30.7.4: Auxins, Cytokinins, and Gibberellins
      6. 30.7.5: Abscisic Acid, Ethylene, and Nontraditional Hormones
      7. 30.7.6: Plant Responses to Wind and Touch
    8. 30.8: Plant Defense Mechanisms
      1. 30.8.0: Plant Defenses Against Herbivores
      2. 30.8.1: Plant Defenses Against Pathogens
  31. 31: Soil and Plant Nutrition
    1. 31.1: Nutritional Requirements of Plants
      1. 31.1.0: Plant Nutrition
      2. 31.1.1: The Chemical Composition of Plants
      3. 31.1.2: Essential Nutrients for Plants
    2. 31.2: The Soil
      1. 31.2.0: Soil Composition
      2. 31.2.1: Soil Formation
      3. 31.2.2: Physical Properties of Soil
    3. 31.3: Nutritional Adaptations of Plants
      1. 31.3.0: Nitrogen Fixation: Root and Bacteria Interactions
      2. 31.3.1: Mycorrhizae: The Symbiotic Relationship between Fungi and Roots
      3. 31.3.2: Nutrients from Other Sources
  32. 32: Plant Reproduction
    1. 32.1: Plant Reproductive Development and Structure
      1. 32.1.0: Plant Reproductive Development and Structure
      2. 32.1.1: Sexual Reproduction in Gymnosperms
      3. 32.1.2: Sexual Reproduction in Angiosperms
    2. 32.2: Pollination and Fertilization
      1. 32.2.0: Pollination and Fertilization
      2. 32.2.1: Pollination by Insects
      3. 32.2.2: Pollination by Bats, Birds, Wind, and Water
      4. 32.2.3: Double Fertilization in Plants
      5. 32.2.4: Development of the Seed
      6. 32.2.5: Development of Fruit and Fruit Types
      7. 32.2.6: Fruit and Seed Dispersal
    3. 32.3: Asexual Reproduction
      1. 32.3.0: Asexual Reproduction in Plants
      2. 32.3.1: Natural and Artificial Methods of Asexual Reproduction in Plants
      3. 32.3.2: Plant Life Spans
  33. 33: The Animal Body: Basic Form and Function
    1. 33.1: Animal Form and Function
      1. 33.1.0: Characteristics of the Animal Body
      2. 33.1.1: Body Plans
      3. 33.1.2: Limits on Animal Size and Shape
      4. 33.1.3: Limiting Effects of Diffusion on Size and Development
      5. 33.1.4: Animal Bioenergetics
      6. 33.1.5: Animal Body Planes and Cavities
    2. 33.2: Animal Primary Tissues
      1. 33.2.0: Epithelial Tissues
      2. 33.2.1: Connective Tissues: Loose, Fibrous, and Cartilage
      3. 33.2.2: Connective Tissues: Bone, Adipose, and Blood
      4. 33.2.3: Muscle Tissues and Nervous Tissues
    3. 33.3: Homeostasis
      1. 33.3.0: Homeostatic Process
      2. 33.3.1: Control of Homeostasis
      3. 33.3.2: Homeostasis: Thermoregulation
      4. 33.3.3: Heat Conservation and Dissipation
  34. 34: Animal Nutrition and the Digestive System
    1. 34.1: Digestive Systems
      1. 34.1.0: Digestive Systems
      2. 34.1.1: Herbivores, Omnivores, and Carnivores
      3. 34.1.2: Invertebrate Digestive Systems
      4. 34.1.3: Vertebrate Digestive Systems
      5. 34.1.4: Digestive System: Mouth and Stomach
      6. 34.1.5: Digestive System: Small and Large Intestines
    2. 34.2: Nutrition and Energy Production
      1. 34.2.0: Food Requirements and Essential Nutrients
      2. 34.2.1: Food Energy and ATP
    3. 34.3: Digestive System Processes
      1. 34.3.0: Ingestion
      2. 34.3.1: Digestion and Absorption
      3. 34.3.2: Elimination
    4. 34.4: Digestive System Regulation
      1. 34.4.0: Neural Responses to Food
      2. 34.4.1: Hormonal Responses to Food
  35. 35: The Nervous System
    1. 35.1: Neurons and Glial Cells
      1. 35.1.0: Neurons and Glial Cells
      2. 35.1.1: Neurons
      3. 35.1.2: Glia
    2. 35.2: How Neurons Communicate
      1. 35.2.0: Nerve Impulse Transmission within a Neuron: Resting Potential
      2. 35.2.1: Nerve Impulse Transmission within a Neuron: Action Potential
      3. 35.2.2: Synaptic Transmission
      4. 35.2.3: Signal Summation
      5. 35.2.4: Synaptic Plasticity
    3. 35.3: The Nervous System
      1. 35.3.0: The Nervous System
    4. 35.4: The Central Nervous System
      1. 35.4.0: Brain: Cerebral Cortex and Brain Lobes
      2. 35.4.1: Brain: Midbrain and Brain Stem
      3. 35.4.2: Spinal Cord
    5. 35.5: The Peripheral Nervous System
      1. 35.5.0: Autonomic Nervous System
      2. 35.5.1: Sensory-Somatic Nervous System
    6. 35.6: Nervous System Disorders
      1. 35.6.0: Neurodegenerative Disorders
      2. 35.6.1: Neurodevelopmental Disorders: Autism and ADHD
      3. 35.6.2: Neurodevelopmental Disorders: Mental Illnesses
      4. 35.6.3: Other Neurological Disorders
  36. 36: Sensory Systems
    1. 36.1: Sensory Processes
      1. 36.1.0: Reception
      2. 36.1.1: Transduction and Perception
    2. 36.2: Somatosensation
      1. 36.2.0: Somatosensory Receptors
      2. 36.2.1: Integration of Signals from Mechanoreceptors
      3. 36.2.2: Thermoreception
    3. 36.3: Taste and Smell
      1. 36.3.0: Tastes and Odors
      2. 36.3.1: Reception and Transduction
    4. 36.4: Hearing and Vestibular Sensation
      1. 36.4.0: Sound
      2. 36.4.1: Reception of Sound
      3. 36.4.2: Transduction of Sound
      4. 36.4.3: The Vestibular System
      5. 36.4.4: Balance and Determining Equilibrium
    5. 36.5: Vision
      1. 36.5.0: Light
      2. 36.5.1: Anatomy of the Eye
      3. 36.5.2: Transduction of Light
      4. 36.5.3: Visual Processing
  37. 37: The Endocrine System
    1. 37.1: Types of Hormones
      1. 37.1.0: Hormone Functions
      2. 37.1.1: Lipid-Derived, Amino Acid-Derived, and Peptide Hormones
    2. 37.2: How Hormones Work
      1. 37.2.0: How Hormones Work
      2. 37.2.1: Intracellular Hormone Receptors
      3. 37.2.2: Plasma Membrane Hormone Receptors
    3. 37.3: Regulation of Body Processes
      1. 37.3.0: Hormonal Regulation of the Excretory System
      2. 37.3.1: Hormonal Regulation of the Reproductive System
      3. 37.3.2: Hormonal Regulation of Metabolism
      4. 37.3.3: Hormonal Control of Blood Calcium Levels
      5. 37.3.4: Hormonal Regulation of Growth
      6. 37.3.5: Hormonal Regulation of Stress
    4. 37.4: Regulation of Hormone Production
      1. 37.4.0: Humoral, Hormonal, and Neural Stimuli
    5. 37.5: Endocrine Glands
      1. 37.5.0: Hypothalamic-Pituitary Axis
      2. 37.5.1: Thyroid Gland
      3. 37.5.2: Parathyroid Glands
      4. 37.5.3: Adrenal Glands
      5. 37.5.4: Pancreas
      6. 37.5.5: Pineal Gland and Gonads
      7. 37.5.6: Organs with Secondary Endocrine Functions
  38. 38: The Musculoskeletal System
    1. 38.1: Types of Skeletal Systems
      1. 38.1.0: Functions of the Musculoskeletal System
      2. 38.1.1: Types of Skeletal Systems
      3. 38.1.2: Human Axial Skeleton
      4. 38.1.3: Human Appendicular Skeleton
    2. 38.2: Bone
      1. 38.2.0: Bone
      2. 38.2.1: Cell Types in Bones
      3. 38.2.2: Bone Development
      4. 38.2.3: Growth of Bone
      5. 38.2.4: Bone Remodeling and Repair
    3. 38.3: Joints and Skeletal Movement
      1. 38.3.0: Classification of Joints on the Basis of Structure and Function
      2. 38.3.1: Movement at Synovial Joints
      3. 38.3.2: Types of Synovial Joints
      4. 38.3.3: Bone and Joint Disorders
    4. 38.4: Muscle Contraction and Locomotion
      1. 38.4.0: Structure and Function of the Muscular System
      2. 38.4.1: Skeletal Muscle Fibers
      3. 38.4.2: Sliding Filament Model of Contraction
      4. 38.4.3: ATP and Muscle Contraction
      5. 38.4.4: Regulatory Proteins
      6. 38.4.5: Excitation–Contraction Coupling
      7. 38.4.6: Control of Muscle Tension
  39. 39: The Respiratory System
    1. 39.1: Systems of Gas Exchange
      1. 39.1.0: The Respiratory System and Direct Diffusion
      2. 39.1.1: Skin, Gills, and Tracheal Systems
      3. 39.1.2: Amphibian and Bird Respiratory Systems
      4. 39.1.3: Mammalian Systems and Protective Mechanisms
    2. 39.2: Gas Exchange across Respiratory Surfaces
      1. 39.2.0: Gas Pressure and Respiration
      2. 39.2.1: Basic Principles of Gas Exchange
      3. 39.2.2: Lung Volumes and Capacities
      4. 39.2.3: Gas Exchange across the Alveoli
    3. 39.3: Breathing
      1. 39.3.0: The Mechanics of Human Breathing
      2. 39.3.1: Types of Breathing
      3. 39.3.2: The Work of Breathing
      4. 39.3.3: Dead Space: V/Q Mismatch
    4. 39.4: Transport of Gases in Human Bodily Fluids
      1. 39.4.0: Transport of Oxygen in the Blood
      2. 39.4.1: Transport of Carbon Dioxide in the Blood
  40. 40: The Circulatory System
    1. 40.1: Overview of the Circulatory System
      1. 40.1.0: The Role of the Circulatory System
      2. 40.1.1: Open and Closed Circulatory Systems
      3. 40.1.2: Types of Circulatory Systems in Animals
    2. 40.2: Components of the Blood
      1. 40.2.0: The Role of Blood in the Body
      2. 40.2.1: Red Blood Cells
      3. 40.2.2: White Blood Cells
      4. 40.2.3: Platelets and Coagulation Factors
      5. 40.2.4: Plasma and Serum
    3. 40.3: Mammalian Heart and Blood Vessels
      1. 40.3.0: Structures of the Heart
      2. 40.3.1: Arteries, Veins, and Capillaries
      3. 40.3.2: The Cardiac Cycle
    4. 40.4: Blood Flow and Blood Pressure Regulation
      1. 40.4.0: Blood Flow Through the Body
      2. 40.4.1: Blood Pressure
  41. 41: Osmotic Regulation and the Excretory System
    1. 41.1: Osmoregulation and Osmotic Balance
      1. 41.1.0: Introduction to Osmoregulation
      2. 41.1.1: Transport of Electrolytes across Cell Membranes
      3. 41.1.2: Concept of Osmolality and Milliequivalent
      4. 41.1.3: Osmoregulators and Osmoconformers
    2. 41.2: Nitrogenous Wastes
      1. 41.2.0: Nitrogenous Waste in Terrestrial Animals: The Urea Cycle
      2. 41.2.1: Nitrogenous Waste in Birds and Reptiles: Uric Acid
    3. 41.3: Excretion Systems
      1. 41.3.0: Contractile Vacuoles in Microorganisms
      2. 41.3.1: Flame Cells of Planaria and Nephridia of Worms
      3. 41.3.2: Malpighian Tubules of Insects
    4. 41.4: Human Osmoregulatory and Excretory Systems
      1. 41.4.0: Kidney Structure
      2. 41.4.1: Nephron: The Functional Unit of the Kidney
      3. 41.4.2: Kidney Function and Physiology
    5. 41.5: Hormonal Control of Osmoregulatory Functions
      1. 41.5.0: Epinephrine and Norepinephrine
      2. 41.5.1: Other Hormonal Controls for Osmoregulation
  42. 42: The Immune System
    1. 42.1: Innate Immune Response
      1. 42.1.0: Innate Immune Response
      2. 42.1.1: Physical and Chemical Barriers
      3. 42.1.2: Pathogen Recognition
      4. 42.1.3: Natural Killer Cells
      5. 42.1.4: The Complement System
    2. 42.2: Adaptive Immune Response
      1. 42.2.0: Antigen-presenting Cells: B and T cells
      2. 42.2.1: Humoral Immune Response
      3. 42.2.2: Cell-Mediated Immunity
      4. 42.2.3: Cytotoxic T Lymphocytes and Mucosal Surfaces
      5. 42.2.4: Immunological Memory
      6. 42.2.5: Regulating Immune Tolerance
    3. 42.3: Antibodies
      1. 42.3.0: Antibody Structure
      2. 42.3.1: Antibody Functions
    4. 42.4: Disruptions in the Immune System
      1. 42.4.0: Immunodeficiency
      2. 42.4.1: Hypersensitivities
  43. 43: Animal Reproduction and Development
    1. 43.1: Reproduction Methods
      1. 43.1.0: Methods of Reproducing
      2. 43.1.1: Types of Sexual and Asexual Reproduction
      3. 43.1.2: Sex Determination
    2. 43.2: Fertilization
      1. 43.2.0: External and Internal Fertilization
      2. 43.2.1: The Evolution of Reproduction
    3. 43.3: Human Reproductive Anatomy and Gametogenesis
      1. 43.3.0: Male Reproductive Anatomy
      2. 43.3.1: Female Reproductive Anatomy
      3. 43.3.2: Gametogenesis (Spermatogenesis and Oogenesis)
    4. 43.4: Hormonal Control of Human Reproduction
      1. 43.4.0: Male Hormones
      2. 43.4.1: Female Hormones
    5. 43.5: Fertilization and Early Embryonic Development
      1. 43.5.0: Fertilization
      2. 43.5.1: Cleavage, the Blastula Stage, and Gastrulation
    6. 43.6: Organogenesis and Vertebrate Formation
      1. 43.6.0: Organogenesis
      2. 43.6.1: Vertebrate Axis Formation
    7. 43.7: Human Pregnancy and Birth
      1. 43.7.0: Human Gestation
      2. 43.7.1: Labor and Birth
      3. 43.7.2: Contraception and Birth Control
      4. 43.7.3: Infertility
  44. 44: Ecology and the Biosphere
    1. 44.1: The Scope of Ecology
      1. 44.1.0: Introduction to Ecology
      2. 44.1.1: Organismal Ecology and Population Ecology
      3. 44.1.2: Community Ecology and Ecosystem Ecology
    2. 44.2: Biogeography
      1. 44.2.0: Biogeography
      2. 44.2.1: Energy Sources
      3. 44.2.2: Temperature and Water
      4. 44.2.3: Inorganic Nutrients and Other Factors
      5. 44.2.4: Abiotic Factors Influencing Plant Growth
    3. 44.3: Terrestrial Biomes
      1. 44.3.0: What constitutes a biome?
      2. 44.3.1: Tropical Wet Forest and Savannas
      3. 44.3.2: Subtropical Deserts and Chaparral
      4. 44.3.3: Temperate Grasslands
      5. 44.3.4: Temperate Forests
      6. 44.3.5: Boreal Forests and Arctic Tundra
    4. 44.4: Aquatic Biomes
      1. 44.4.0: Abiotic Factors Influencing Aquatic Biomes
      2. 44.4.1: Marine Biomes
      3. 44.4.2: Estuaries: Where the Ocean Meets Fresh Water
      4. 44.4.3: Freshwater Biomes
    5. 44.5: Climate and the Effects of Global Climate Change
      1. 44.5.0: Climate and Weather
      2. 44.5.1: Causes of Global Climate Change
      3. 44.5.2: Evidence of Global Climate Change
      4. 44.5.3: Past and Present Effects of Climate Change
  45. 45: Population and Community Ecology
    1. 45.1: Population Demography
      1. 45.1.0: Population Demography
      2. 45.1.1: Population Size and Density
      3. 45.1.2: Species Distribution
      4. 45.1.3: The Study of Population Dynamics
    2. 45.2: Environmental Limits to Population Growth
      1. 45.2.0: Exponential Population Growth
      2. 45.2.1: Logistic Population Growth
      3. 45.2.2: Density-Dependent and Density-Independent Population Regulation
    3. 45.3: Life History Patterns
      1. 45.3.0: Life History Patterns and Energy Budgets
      2. 45.3.1: Theories of Life History
    4. 45.4: Human Population Growth
      1. 45.4.0: Human Population Growth
      2. 45.4.1: Overcoming Density-Dependent Regulation
      3. 45.4.2: Age Structure, Population Growth, and Economic Development
    5. 45.5: Community Ecology
      1. 45.5.0: The Role of Species within Communities
      2. 45.5.1: Predation, Herbivory, and the Competitive Exclusion Principle
      3. 45.5.2: Symbiosis
      4. 45.5.3: Ecological Succession
    6. 45.6: Innate Animal Behavior
      1. 45.6.0: Introduction to Animal Behavior
      2. 45.6.1: Movement and Migration
      3. 45.6.2: Animal Communication and Living in Groups
      4. 45.6.3: Altruism and Populations
      5. 45.6.4: Mating Systems and Sexual Selection
    7. 45.7: Learned Animal Behavior
      1. 45.7.0: Simple Learned Behaviors
      2. 45.7.1: Conditioned Behavior
      3. 45.7.2: Cognitive Learning and Sociobiology
  46. 46: Ecosystems
    1. 46.1: Ecology of Ecosystems
      1. 46.1.0: Ecosystem Dynamics
      2. 46.1.1: Food Chains and Food Webs
      3. 46.1.2: Studying Ecosystem Dynamics
      4. 46.1.3: Modeling Ecosystem Dynamics
    2. 46.2: Energy Flow through Ecosystems
      1. 46.2.0: Strategies for Acquiring Energy
      2. 46.2.1: Productivity within Trophic Levels
      3. 46.2.2: Transfer of Energy between Trophic Levels
      4. 46.2.3: Ecological Pyramids
      5. 46.2.4: Biological Magnification
    3. 46.3: Biogeochemical Cycles
      1. 46.3.0: Biogeochemical Cycles
      2. 46.3.1: The Water (Hydrologic) Cycle
      3. 46.3.2: The Carbon Cycle
      4. 46.3.3: The Nitrogen Cycle
      5. 46.3.4: The Phosphorus Cycle
      6. 46.3.5: The Sulfur Cycle
  47. 47: Conservation Biology and Biodiversity
    1. 47.1: The Biodiversity Crisis
      1. 47.1.0: Loss of Biodiversity
      2. 47.1.1: Types of Biodiversity
      3. 47.1.2: Biodiversity Change through Geological Time
      4. 47.1.3: The Pleistocene Extinction
      5. 47.1.4: Present-Time Extinctions
    2. 47.2: The Importance of Biodiversity to Human Life
      1. 47.2.0: Human Health and Biodiversity
      2. 47.2.1: Agricultural Diversity
      3. 47.2.2: Managing Fisheries
    3. 47.3: Threats to Biodiversity
      1. 47.3.0: Habitat Loss and Sustainability
      2. 47.3.1: Overharvesting
      3. 47.3.2: Exotic Species
      4. 47.3.3: Climate Change and Biodiversity
    4. 47.4: Preserving Biodiversity
      1. 47.4.0: Measuring Biodiversity
      2. 47.4.1: Changing Human Behavior in Response to Biodiversity Loss
      3. 47.4.2: Ecological Restoration

23.1: Eukaryotic Origins

23.1.1: Early Eukaryotes

Protists are eukaryotes that first appeared approximately 2 billion years ago with the rise of atmospheric oxygen levels.

Learning Objective

Discuss the origins of eukaryotes in terms of the geologic time line

Key Points

  • On a geological time line, protists are among the first organisms that evolved after prokaryotes.
  • Today's eukaryotes evolved from a common ancestor with the following features: a nucleus that divided via mitosis, DNA associated with histones, a cytoskeleton and endomembrane system, the ability to make cilia/flagella.
  • Protists vary widely in size, from single cells approximately 10 µm in size to multicellular seaweeds that are visible with the naked eye.

Key Terms

endomembrane

all the membraneous components inside a eukaryotic cell, including the nuclear envelope, endoplastic reticulum, and Golgi apparatus

aerobic

living or occurring only in the presence of oxygen

cyanobacteria

photosynthetic prokaryotic microorganisms, of phylum Cyanobacteria, once known as blue-green algae

Origins of Eukaryotes

Humans have been familiar with macroscopic organisms (organisms big enough to see with the unaided eye) since before there was a written history. It is likely that most cultures distinguished between animals and land plants, but most probably included the macroscopic fungi as plants. Therefore, it became an interesting challenge to deal with the world of microorganisms once microscopes were developed a few centuries ago. Many different naming schemes were used over the last couple of centuries, but it has become the most common practice to refer to eukaryotes that are not land plants, animals, or fungi as protists.

Most protists are microscopic, unicellular organisms that are abundant in soil, freshwater, brackish, and marine environments. They are also common in the digestive tracts of animals and in the vascular tissues of plants. Others invade the cells of other protists, animals, and plants. Not all protists are microscopic. Some have huge, macroscopic cells, such as the plasmodia (giant amoebae) of myxomycete slime molds or the marine green alga Caulerpa, which can have single cells that can be several meters in size. Some protists are multicellular, such as the red, green, and brown seaweeds. It is among the protists that one finds the wealth of ways that organisms can grow. They are among the first organisms to evolve with the rise of eukaryotes.

Eukaryotes in a Geological Time Frame

The oldest fossil evidence of eukaryotes, cells measuring 10 µm or greater, is about 2 billion years old. All fossils older than this appear to be prokaryotes. It is probable that today's eukaryotes are descended from an ancestor that had a prokaryotic cellular organization. The last common ancestor (LCA) of today's Eukarya had several characteristics that included: cells with nuclei that divided mitotically and contained linear chromosomes where the DNA was associated with histones; a cytoskeleton and endomembrane system; and the ability to make cilia/flagella during at least part of its life cycle. The LCA was aerobic because it had mitochondria that were the result of an aerobic alpha-proteobacterium that lived inside a host cell. Whether this host had a nucleus at the time of the initial symbiosis remains unknown. The LCA may have had a cell wall for at least part of its life cycle, but more data are needed to confirm this hypothesis. Today's eukaryotes are very diverse in their shapes, organization, life cycles, and number of cells per individual.

While today's atmosphere is about one-fifth molecular oxygen (O2), geological evidence shows that it originally lacked O2. Without oxygen, aerobic respiration would not be expected; living things would have relied on fermentation instead. At some point before about 3.5 billion years ago, some prokaryotes evolved the ability to photosynthesize. Cyanobacteria used water as a hydrogen source and released O2 as a waste product. Originally, oxygen-rich environments were probably localized around places where cyanobacteria were active, but by about 2 billion years ago, geological evidence shows that oxygen was building up to higher concentrations in the atmosphere. Oxygen levels similar to today's levels only arose within the last 700 million years. Recall that the first fossils that we believe to be eukaryotes date to about 2 billion years old, so they appeared as oxygen levels were increasing.

Protist varieties

Protist varieties

Protists range from the microscopic, single-celled (a) Acanthocystis turfacea and the (b) ciliate Tetrahymena thermophila, both visualized here using light microscopy, to the enormous, multicellular (c) kelps (Chromalveolata) that extend for hundreds of feet in underwater "forests. "

23.1.2: Characteristics of Eukaryotic DNA

Eukaryotes, having probably evolved from prokaryotes, have more complex traits in both cell and DNA organization.

Learning Objective

Compare and contrast prokaryotic DNA to eukaryotic DNA

Key Points

  • Prokaryotic genomic DNA is attached to the plasma membrane in the form of a nucleoid, in contrast to eukaryotic DNA, which is located in a nucleus.
  • Eukaryotic DNA is linear, compacted into chromosomes by histones, and has telomeres at each end to protect from deterioration.
  • Prokaryotes contain circular DNA in addition to smaller, transferable DNA plasmids.
  • Eukaryotic cells contain mitochondrial DNA in addition to nuclear DNA.
  • Eukaryotes separate replicated chromosomes by mitosis, using cytoskeletal proteins, whereas prokaryotes divide more simply via binary fission.

Key Terms

plasmid

a circle of double-stranded DNA that is separate from the chromosomes, which is found in bacteria and protozoa

telomere

either of the repetitive nucleotide sequences at each end of a eukaryotic chromosome, which protect the chromosome from degradation

Characteristics of Eukaryotic DNA compared to Prokaryotic DNA

Prokaryotic cells are known to be much less complex than eukaryotic cells since eukaryotic cells are considered to be present at a later point of evolution. It is probable that eukaryotic cells evolved from prokaryotic cells. Differences in complexity can be seen at the cellular level.

The single characteristic that is both necessary and sufficient to define an organism as a eukaryote is a nucleus surrounded by a nuclear envelope with nuclear pores. All extant eukaryotes have cells with nuclei; most of a eukaryotic cell's genetic material is contained within the nucleus. In contrast, prokaryotic DNA is not contained within a nucleus, but rather is attached to the plasma membrane and contained in the form of a nucleoid, an irregularly-shaped region that is not surrounded by a nuclear membrane .

Cellular location of eukaryotic and prokaryotic DNA

Cellular location of eukaryotic and prokaryotic DNA

Eukaryotic DNA is stored in a nucleus, whereas prokaryotic DNA is in the cytoplasm in the form of a nucleoid.

Eukaryotic DNA is packed into bundles of chromosomes, each consisting of a linear DNA molecule coiled around basic (alkaline) proteins called histones, which wind the DNA into a more compact form. Prokaryotic DNA is found in circular, non-chromosomal form. In addition, prokaryotes have plasmids, which are smaller pieces of circular DNA that can replicate separately from prokaryotic genomic DNA. Because of the linear nature of eukaryotic DNA, repeating non-coding DNA sequences called telomeres are present on either end of the chromosomes as protection from deterioration.

Mitosis, a process of nuclear division wherein replicated chromosomes are divided and separated using elements of the cytoskeleton, is universally present in eukaryotes. The cytoskeleton contains structural and motility components called actin microfilaments and microtubules. All extant eukaryotes have these cytoskeletal elements. Prokaryotes on the other hand undergo binary fission in a process where the DNA is replicated, then separates to two poles of the cell, and, finally, the cell fully divides.

A major DNA difference between eukaryotes and prokaryotes is the presence of mitochondrial DNA (mtDNA) in eukaryotes. Because eukaryotes have mitochondria and prokaryotes do not, eukaryotic cells contain mitochondrial DNA in addition to DNA contained in the nucleus and ribosomes. The mtDNA is composed of significantly fewer base pairs than nuclear DNA and encodes only a few dozen genes, depending on the organism.

23.1.3: Endosymbiosis and the Evolution of Eukaryotes

Eukaryotes may have been a product of one cell engulfing another and evolving over time until the separate cells became a single organism.

Learning Objective

Describe the general concept of endosymbiosis and the evolution of eukaryotes

Key Points

  • Endosymbiosis is the concept of one cell engulfing another and both cells benefiting from the relationship.
  • Endosymbiosis was originally considered after the observation of the similarity between plant chloroplasts and free-living cyanobacteria.
  • Peroxisomes may have been the first endosymbionts, caused by the increasing amount of atmospheric oxygen at that point in geological time.
  • Over time, endosymbionts may have transferred some of their DNA to the host nucleus, thus becoming dependent on the host for survival and completing full integration into a single organism.

Key Terms

cyanobacteria

photosynthetic prokaryotic microorganisms, of phylum Cyanobacteria, once known as blue-green algae

peroxisome

a eukaryotic organelle that is the source of the enzymes that catalyze the production and breakdown of hydrogen peroxide and are responsible for the oxidation of long-chain fatty acids

endosymbiont

an organism that lives within the body or cells of another organism

Endosymbiosis and the Evolution of Eukaryotes

To fully understand eukaryotic organisms, it is necessary to understand that all extant eukaryotes are descendants of a chimeric organism that was a composite of a host cell and the cell(s) of an alpha-proteobacterium that "took up residence" inside the host. This major theme in the origin of eukaryotes is known as endosymbiosis, where one cell engulfs another such that the engulfed cell survives and both cells benefit . Over many generations, a symbiotic relationship can result in two organisms that depend on each other so completely that neither could survive on its own. Endosymbiotic events probably contributed to the origin of the last common ancestor (LCA) of today's eukaryotes.

Endosymbiosis

Endosymbiosis

Modern eukaryotic cells evolved from more primitive cells that engulfed bacteria with useful properties, such as energy production. Combined, the once-independent organisms flourished and evolved into a single organism.

Endosymbiotic Theory

The endosymbiotic theory was first articulated by the Russian botanist Konstantin Mereschkowski in 1905. Mereschkowski was familiar with work by botanist Andreas Schimper, who had observed in 1883 that the division of chloroplasts in green plants closely resembled that of free-living cyanobacteria. Schimper had tentatively proposed that green plants arose from a symbiotic union of two organisms. Ivan Wallin extended the idea of an endosymbiotic origin to mitochondria in the 1920s. These theories were initially dismissed or ignored. More detailed electron microscopic comparisons between cyanobacteria and chloroplasts combined with the discovery that plastids (organelles associated with photosynthesis) and mitochondria contain their own DNA led to a resurrection of the idea in the 1960s. The endosymbiotic theory was advanced and substantiated with microbiological evidence by Lynn Margulis in 1967 .

Chloroplasts in plants

Chloroplasts in plants

A eukaryote with mitochondria engulfed a cyanobacterium in an event of serial primary endosymbiosis, creating a lineage of cells with both organelles. These cyanobacteria have become chloroplasts in modern plant cells. The cyanobacterial endosymbiont already had a double membrane.

In 1981 she argued that eukaryotic cells originated as communities of interacting entities, including endosymbiotic spirochetes that developed into eukaryotic flagella and cilia. This last idea has not received much acceptance because flagella lack DNA and do not show ultrastructural similarities to bacteria or archaea. According to Margulis and Dorion Sagan, "Life did not take over the globe by combat, but by networking" (i.e., by cooperation). The possibility that the peroxisome organelles may have an endosymbiotic origin has also been considered, although they lack DNA. Christian de Duve proposed that they may have been the first endosymbionts, allowing cells to withstand growing amounts of free molecular oxygen in the earth's atmosphere. However, it now appears that they may be formed de novo, contradicting the idea that they have a symbiotic origin.

It is believed that over millennia these endosymbionts transferred some of their own DNA to the host cell's nucleus during the evolutionary transition from a symbiotic community to an instituted eukaryotic cell (called "serial endosymbiosis"). This hypothesis is thought to be possible because it is known today from scientific observation that transfer of DNA occurs between bacteria species, even if they are not closely related. Bacteria can take up DNA from their surroundings and have a limited ability to incorporate it into their own genome.

23.1.4: The Evolution of Mitochondria

Mitochondria are energy-producing organelles that are thought to have once been a type of free-living alpha-proteobacterium.

Learning Objective

Explain the relationship between endosymbiosis and mitochondria to the evolution of eukaryotes

Key Points

  • Eukaryotic cells contain varying amounts of mitochondria, depending on the cells' energy needs.
  • Mitochondria have many features that suggest they were formerly independent organisms, including their own DNA, cell-independent division, and physical characteristics similar to alpha-proteobacteria.
  • Some mitochondrial genes transferred to the nuclear genome over time, yet mitochondria retained some genetic material for reasons not completely understood.
  • The hypothesized transfer of genes from mitochondria to the host cell's nucleus likely explains why mitochondria are not able to survive outside the host cell.

Key Terms

endosymbiosis

when one symbiotic species is taken inside the cytoplasm of another symbiotic species and both become endosymbiotic

vacuole

a large, membrane-bound, fluid-filled compartment in a cell's cytoplasm

crista

cristae (singular crista) are the internal compartments formed by the inner membrane of a mitochondrion

Relationship between Endosymbiosis and Mitochondria

One of the major features distinguishing prokaryotes from eukaryotes is the presence of mitochondria. Eukaryotic cells contain anywhere from one to several thousand mitochondria, depending on the cell's level of energy consumption. Each mitochondrion measures between 1 to 10 µm in length and exists in the cell as an organelle that can be ovoid to worm-shaped to intricately branched. Mitochondria arise from the division of existing mitochondria. They may fuse together. They move around inside the cell by interactions with the cytoskeleton. However, mitochondria cannot survive outside the cell. As the amount of oxygen increased in the atmosphere billions of years ago and as successful aerobic prokaryotes evolved, evidence suggests that an ancestral cell with some membrane compartmentalization engulfed a free-living aerobic prokaryote, specifically an alpha-proteobacterium, thereby giving the host cell the ability to use oxygen to release energy stored in nutrients. Alpha-proteobacteria are a large group of bacteria that includes species symbiotic with plants, disease organisms that can infect humans via ticks, and many free-living species that use light for energy. Several lines of evidence support the derivation of mitochondria from this endosymbiotic event. Most mitochondria are shaped like alpha-proteobacteria and are surrounded by two membranes, which would result when one membrane-bound organism engulfs another into a vacuole. The mitochondrial inner membrane involves substantial infoldings called cristae that resemble the textured, outer surface of alpha-proteobacteria . The matrix and inner membrane are rich with enzymes necessary for aerobic respiration.

Micrograph of mammaliam mitochondria

Micrograph of mammaliam mitochondria

In this transmission electron micrograph of mitochondria in a mammalian lung cell, the cristae, infoldings of the mitochondrial inner membrane, can be seen in cross-section.

Mitochondria divide independently by a process that resembles binary fission in prokaryotes. Specifically, mitochondria are not formed de novo by the eukaryotic cell; they reproduce within the cell and are distributed between two cells when cells divide. Therefore, although these organelles are highly integrated into the eukaryotic cell, they still reproduce as if they are independent organisms within the cell. However, their reproduction is synchronized with the activity and division of the cell. Mitochondria have their own circular DNA chromosome that is stabilized by attachments to the inner membrane and carries genes similar to genes expressed by alpha-proteobacteria. Mitochondria also have special ribosomes and transfer RNAs that resemble these components in prokaryotes. These features all support that mitochondria were once free-living prokaryotes.

Mitochondrial Genes

Mitochondria that carry out aerobic respiration have their own genomes, with genes similar to those in alpha-proteobacteria. However, many of the genes for respiratory proteins are located in the nucleus. When these genes are compared to those of other organisms, they appear to be of alpha-proteobacterial origin. Additionally, in some eukaryotic groups, such genes are found in the mitochondria, whereas in other groups, they are found in the nucleus. This has been interpreted as evidence that genes have been transferred from the endosymbiont chromosome to the host genome. This loss of genes by the endosymbiont is probably one explanation why mitochondria cannot live without a host.

Despite the transfer of genes between mitochondria and the nucleus, mitochondria retain much of their own independent genetic material. One possible explanation for mitochondria retaining control over some genes is that it may be difficult to transport hydrophobic proteins across the mitochondrial membrane as well as ensure that they are shipped to the correct location, which suggests that these proteins must be produced within the mitochondria. Another possible explanation is that there are differences in codon usage between the nucleus and mitochondria, making it difficult to be able to fully transfer the genes. A third possible explanation is that mitochondria need to produce their own genetic material so as to ensure metabolic control in eukaryotic cells, which indicates that mtDNA directly influences the respiratory chain and the reduction/oxidation processes of the mitochondria.

23.1.5: The Evolution of Plastids

Plastids may derive from cyanobacteria engulfed via endosymbiosis by early eukaryotes, giving cells the ability to conduct photosynthesis.

Learning Objective

Explain the relationship between endosymbiosis and plastids to the evolution of eukaryotes

Key Points

  • Chloroplasts, chromoplasts, and leucoplasts are each a type of plastid.
  • Plastids in eukaryotes derive from primary endosymbiosis with ancient cyanobacteria.
  • Chlorarachniophytes are a type of algae that resulted from secondary endosymbiosis, when a eukaryote engulfed a green alga (which itself was a product of primary endosymbiosis with a cyanobacterium).
  • Plastids share several features with mitochondria, including having their own DNA and the ability to replicate by binary fission.

Key Terms

chloroplast

an organelle found in the cells of green plants and photosynthetic algae where photosynthesis takes place

thylakoid

a folded membrane within plant chloroplasts from which grana are made, used in photosynthesis

plastid

any of various organelles found in the cells of plants and algae, often concerned with photosynthesis

Plastids

Some groups of eukaryotes are photosynthetic: their cells contain, in addition to the standard eukaryotic organelles, another kind of organelle called a plastid. There are three type of plastids: chloroplasts, chromoplasts, and leucoplasts. Chloroplasts are plastids that conduct photosynthesis. Chromoplasts are plastids that synthesize and store pigments. Leucoplasts are plastids located in the non-synthetic tissues of a plant (e.g., roots) and generally store non-pigment molecules.

Like mitochondria, plastids appear to have a primary endosymbiotic origin, but differ in that they derive from cyanobacteria rather than alpha-proteobacteria. Cyanobacteria are a group of photosynthetic bacteria with all the conventional structures of prokaryotes. Unlike most prokaryotes, however, they have extensive, internal membrane-bound compartments called thylakoids, which contain chlorophyll and are the site of the light-dependent reactions of photosynthesis . In addition to thylakoids, chloroplasts found in eukaryotes have a circular DNA chromosome and ribosomes similar to those of cyanobacteria. Each chloroplast is surrounded by two membranes, suggestive of primary endosymbiosis. The outer membrane surrounding the plastid is thought have derived from the vacuole in the host, while the inner membrane is thought to have derived from the plasma membrane of the endosymbiont.

Chloroplast

Chloroplast

(a) This chloroplast cross-section illustrates its elaborate inner membrane organization. Stacks of thylakoid membranes compartmentalize photosynthetic enzymes and provide scaffolding for chloroplast DNA. (b) The chloroplasts can be seen as small green spheres.

There is also, as with the case of mitochondria, strong evidence that many of the genes of the endosymbiont transferred to the nucleus. Plastids, like mitochondria, cannot live independently outside the host. In addition, like mitochondria, plastids derive from the binary fission of other plastids. Researchers have suggested that the endosymbiotic event that led to Archaeplastida (land plants, red and green algae) occurred 1 to 1.5 billion years ago, at least 500 million years after the fossil record suggests the presence of eukaryotes.

Secondary Endosymbiosis in Chlorarachniophytes

Endosymbiosis involves one cell engulfing another to produce, over time, a co-evolved relationship in which neither cell could survive alone. The chloroplasts of red and green algae, for instance, are derived from the engulfment of a photosynthetic cyanobacterium by an early prokaryote . This leads to the question of the possibility of a cell containing an endosymbiont to become engulfed itself, resulting in a secondary endosymbiosis . Not all plastids in eukaryotes derive directly from primary endosymbiosis. Some of the major groups of algae became photosynthetic by secondary endosymbiosis; that is, by taking in either green algae or red algae as endosymbionts. Numerous microscopic and genetic studies support this conclusion; secondary plastids are surrounded by three or more membranes; some secondary plastids even have clear remnants of the nucleus of endosymbiotic algae.

Primary and secondary endosymbiosis

Primary and secondary endosymbiosis

The hypothesized process of endosymbiotic events leading to the evolution of chlorarachniophytes is shown. In a primary endosymbiotic event, a heterotrophic eukaryote consumed a cyanobacterium. In a secondary endosymbiotic event, the cell resulting from primary endosymbiosis was consumed by a second cell. The resulting organelle became a plastid in modern chlorarachniophytes.

Red and green algae

Red and green algae

(a) Red algae and (b) green algae (visualized by light microscopy) share similar DNA sequences with photosynthetic cyanobacteria. Scientists speculate that, in a process called endosymbiosis, an ancestral prokaryote engulfed a photosynthetic cyanobacterium that evolved into modern-day chloroplasts.

Molecular and morphological evidence suggest that the chlorarachniophyte protists are derived from a secondary endosymbiotic event. Chlorarachniophytes are rare algae indigenous to tropical seas and sand. These protists are thought to have originated when a eukaryote engulfed a green alga, the latter of which had already established an endosymbiotic relationship with a photosynthetic cyanobacterium. Several lines of evidence support that chlorarachniophytes evolved from secondary endosymbiosis. The chloroplasts contained within the green algal endosymbionts are capable of photosynthesis, making chlorarachniophytes photosynthetic. The green algal endosymbiont also exhibits a stunted vestigial nucleus. In fact, it appears that chlorarachniophytes are the products of a recent (on the scale of evolution) secondary endosymbiotic event. The plastids of chlorarachniophytes are surrounded by four membranes: the first two correspond to the inner and outer membranes of the photosynthetic cyanobacterium, the third corresponds to the green alga, and the fourth corresponds to the vacuole that surrounded the green alga when it was engulfed by the chlorarachniophyte ancestor.

The process of secondary endosymbiosis is not unique to chlorarachniophytes. In fact, secondary endosymbiosis of green algae also led to euglenid protists, whereas secondary endosymbiosis of red algae led to the evolution of dinoflagellates, apicomplexans, and stramenopiles.

Attributions

  • Early Eukaryotes
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "endomembrane." http://en.wiktionary.org/wiki/endomembrane. Wiktionary CC BY-SA 3.0.
    • "aerobic." http://en.wiktionary.org/wiki/aerobic. Wiktionary CC BY-SA 3.0.
    • "cyanobacteria." http://en.wiktionary.org/wiki/cyanobacteria. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. November 12, 2013." http://cnx.org/content/m44614/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Biology. October 16, 2013." http://cnx.org/content/m44612/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "General Biology/Classification of Living Things/Eukaryotes/Protists." http://en.wikibooks.org/wiki/General_Biology/Classification_of_Living_Things/Eukaryotes/Protists. Wikibooks CC BY-SA 3.0.
    • "OpenStax College, Introduction. October 16, 2013." http://cnx.org/content/m44612/latest/Figure_B23_00_01abc.jpg. OpenStax CNX CC BY 3.0.
  • Characteristics of Eukaryotic DNA
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "plasmid." http://en.wiktionary.org/wiki/plasmid. Wiktionary CC BY-SA 3.0.
    • "telomere." http://en.wiktionary.org/wiki/telomere. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 16, 2013." http://cnx.org/content/m44614/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "Structural Biochemistry/Prokaryotes and Eukaryotes." http://en.wikibooks.org/wiki/Structural_Biochemistry/Prokaryotes_and_Eukaryotes. Wikibooks CC BY-SA 3.0.
    • "Structural Biochemistry/Cellular Basis/Eukaryotic Cell." http://en.wikibooks.org/wiki/Structural_Biochemistry/Cellular_Basis/Eukaryotic_Cell. Wikibooks CC BY-SA 3.0.
    • "Structural Biochemistry/Mitochondrial DNA." http://en.wikibooks.org/wiki/Structural_Biochemistry/Mitochondrial_DNA. Wikibooks CC BY-SA 3.0.
    • "Structural Biochemistry/Prokaryotes and Eukaryotes." http://en.wikibooks.org/wiki/Structural_Biochemistry/Prokaryotes_and_Eukaryotes. Wikibooks CC BY-SA 3.0.
  • Endosymbiosis and the Evolution of Eukaryotes
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "endosymbiont." http://en.wiktionary.org/wiki/endosymbiont. Wiktionary CC BY-SA 3.0.
    • "peroxisome." http://en.wiktionary.org/wiki/peroxisome. Wiktionary CC BY-SA 3.0.
    • "cyanobacteria." http://en.wiktionary.org/wiki/cyanobacteria. Wiktionary CC BY-SA 3.0.
    • "Structural Biochemistry/The Endosymbiotic Theory." http://en.wikibooks.org/wiki/Structural_Biochemistry/The_Endosymbiotic_Theory. Wikibooks CC BY-SA 3.0.
    • "OpenStax College, Biology. October 16, 2013." http://cnx.org/content/m44614/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "An Introduction to Molecular Biology/Macromolecules and Cells." http://en.wikibooks.org/wiki/An_Introduction_to_Molecular_Biology/Macromolecules_and_Cells%23Origin_of_Eukaryotic_organelles_and_endosymbiotic_theory. Wikibooks CC BY-SA 3.0.
    • "Endosymbiosis." http://commons.wikimedia.org/wiki/File:Endosymbiosis.svg. Wikimedia CC BY-SA.
    • "Plagiomnium affine laminazellen." http://en.wikipedia.org/wiki/File:Plagiomnium_affine_laminazellen.jpeg. Wikipedia CC BY.
  • The Evolution of Mitochondria
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "crista." http://en.wikipedia.org/wiki/crista. Wikipedia CC BY-SA 3.0.
    • "vacuole." http://en.wiktionary.org/wiki/vacuole. Wiktionary CC BY-SA 3.0.
    • "Structural Biochemistry/The Endosymbiotic Theory." http://en.wikibooks.org/wiki/Structural_Biochemistry/The_Endosymbiotic_Theory. Wikibooks CC BY-SA 3.0.
    • "OpenStax College, Biology. October 16, 2013." http://cnx.org/content/m44614/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "endosymbiosis." http://en.wiktionary.org/wiki/endosymbiosis. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Eukaryotic Origins. October 16, 2013." http://cnx.org/content/m44614/latest/Figure_23_01_01.jpg. OpenStax CNX CC BY 3.0.
  • The Evolution of Plastids
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "chloroplast." http://en.wiktionary.org/wiki/chloroplast. Wiktionary CC BY-SA 3.0.
    • "plastid." http://en.wiktionary.org/wiki/plastid. Wiktionary CC BY-SA 3.0.
    • "thylakoid." http://en.wiktionary.org/wiki/thylakoid. Wiktionary CC BY-SA 3.0.
    • "Structural Biochemistry/Cell Organelles/Plant Cell." http://en.wikibooks.org/wiki/Structural_Biochemistry/Cell_Organelles/Plant_Cell%23Plastid. Wikibooks CC BY-SA 3.0.
    • "OpenStax College, Biology. October 16, 2013." http://cnx.org/content/m44614/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Eukaryotic Origins. October 16, 2013." http://cnx.org/content/m44614/latest/Figure_23_01_03ab.jpg. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Eukaryotic Origins. October 16, 2013." http://cnx.org/content/m44614/latest/Figure_23_01_02.jpg. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Eukaryotic Origins. October 16, 2013." http://cnx.org/content/m44614/latest/Figure_23_01_05.jpg. OpenStax CNX CC BY 3.0.

Annotate

Next Chapter
23.2: Characteristics of Protists
PreviousNext
Biology
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org