Skip to main content

Boundless Biology: 45.7: Learned Animal Behavior

Boundless Biology
45.7: Learned Animal Behavior
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. 1: The Study of Life
    1. 1.1: The Science of Biology
      1. 1.1.0: Introduction to the Study of Biology
      2. 1.1.1: Scientific Reasoning
      3. 1.1.2: The Scientific Method
      4. 1.1.3: Basic and Applied Science
      5. 1.1.4: Publishing Scientific Work
      6. 1.1.5: Branches and Subdisciplines of Biology
    2. 1.2: Themes and Concepts of Biology
      1. 1.2.0: Properties of Life
      2. 1.2.1: Levels of Organization of Living Things
      3. 1.2.2: The Diversity of Life
  2. 2: The Chemical Foundation of Life
    1. 2.1: Atoms, Isotopes, Ions, and Molecules
      1. 2.1.0: Overview of Atomic Structure
      2. 2.1.1: Atomic Number and Mass Number
      3. 2.1.2: Isotopes
      4. 2.1.3: The Periodic Table
      5. 2.1.4: Electron Shells and the Bohr Model
      6. 2.1.5: Electron Orbitals
      7. 2.1.6: Chemical Reactions and Molecules
      8. 2.1.7: Ions and Ionic Bonds
      9. 2.1.8: Covalent Bonds and Other Bonds and Interactions
      10. 2.1.9: Hydrogen Bonding and Van der Waals Forces
    2. 2.2: Water
      1. 2.2.0: Water’s Polarity
      2. 2.2.1: Water’s States: Gas, Liquid, and Solid
      3. 2.2.2: Water’s High Heat Capacity
      4. 2.2.3: Water’s Heat of Vaporization
      5. 2.2.4: Water’s Solvent Properties
      6. 2.2.5: Water’s Cohesive and Adhesive Properties
      7. 2.2.6: pH, Buffers, Acids, and Bases
    3. 2.3: Carbon
      1. 2.3.0: The Chemical Basis for Life
      2. 2.3.1: Hydrocarbons
      3. 2.3.2: Organic Isomers
      4. 2.3.3: Organic Enantiomers
      5. 2.3.4: Organic Molecules and Functional Groups
  3. 3: Biological Macromolecules
    1. 3.1: Synthesis of Biological Macromolecules
      1. 3.1.0: Types of Biological Macromolecules
      2. 3.1.1: Dehydration Synthesis
      3. 3.1.2: Hydrolysis
    2. 3.2: Carbohydrates
      1. 3.2.0: Carbohydrate Molecules
      2. 3.2.1: Importance of Carbohydrates
    3. 3.3: Lipids
      1. 3.3.0: Lipid Molecules
      2. 3.3.1: Waxes
      3. 3.3.2: Phospholipids
      4. 3.3.3: Steroids
    4. 3.4: Proteins
      1. 3.4.0: Types and Functions of Proteins
      2. 3.4.1: Amino Acids
      3. 3.4.2: Protein Structure
      4. 3.4.3: Denaturation and Protein Folding
    5. 3.5: Nucleic Acids
      1. 3.5.0: DNA and RNA
      2. 3.5.1: The DNA Double Helix
      3. 3.5.2: DNA Packaging
      4. 3.5.3: Types of RNA
  4. 4: Cell Structure
    1. 4.1: Studying Cells
      1. 4.1.0: Cells as the Basic Unit of Life
      2. 4.1.1: Microscopy
      3. 4.1.2: Cell Theory
      4. 4.1.3: Cell Size
    2. 4.2: Prokaryotic Cells
      1. 4.2.0: Characteristics of Prokaryotic Cells
    3. 4.3: Eukaryotic Cells
      1. 4.3.0: Characteristics of Eukaryotic Cells
      2. 4.3.1: The Plasma Membrane and the Cytoplasm
      3. 4.3.2: The Nucleus and Ribosomes
      4. 4.3.3: Mitochondria
      5. 4.3.4: Comparing Plant and Animal Cells
    4. 4.4: The Endomembrane System and Proteins
      1. 4.4.0: Vesicles and Vacuoles
      2. 4.4.1: The Endoplasmic Reticulum
      3. 4.4.2: The Golgi Apparatus
      4. 4.4.3: Lysosomes
      5. 4.4.4: Peroxisomes
    5. 4.5: The Cytoskeleton
      1. 4.5.0: Microfilaments
      2. 4.5.1: Intermediate Filaments and Microtubules
    6. 4.6: Connections between Cells and Cellular Activities
      1. 4.6.0: Extracellular Matrix of Animal Cells
      2. 4.6.1: Intercellular Junctions
  5. 5: Structure and Function of Plasma Membranes
    1. 5.1: Components and Structure
      1. 5.1.0: Components of Plasma Membranes
      2. 5.1.1: Fluid Mosaic Model
      3. 5.1.2: Membrane Fluidity
    2. 5.2: Passive Transport
      1. 5.2.0: The Role of Passive Transport
      2. 5.2.1: Selective Permeability
      3. 5.2.2: Diffusion
      4. 5.2.3: Facilitated transport
      5. 5.2.4: Osmosis
      6. 5.2.5: Tonicity
      7. 5.2.6: Osmoregulation
    3. 5.3: Active Transport
      1. 5.3.0: Electrochemical Gradient
      2. 5.3.1: Primary Active Transport
      3. 5.3.2: Secondary Active Transport
    4. 5.4: Bulk Transport
      1. 5.4.0: Endocytosis
      2. 5.4.1: Exocytosis
  6. 6: Metabolism
    1. 6.1: Energy and Metabolism
      1. 6.1.0: The Role of Energy and Metabolism
      2. 6.1.1: Types of Energy
      3. 6.1.2: Metabolic Pathways
      4. 6.1.3: Metabolism of Carbohydrates
    2. 6.2: Potential, Kinetic, Free, and Activation Energy
      1. 6.2.0: Free Energy
      2. 6.2.1: The First Law of Thermodynamics
      3. 6.2.2: The Second Law of Thermodynamics
      4. 6.2.3: Activation Energy
    3. 6.3: ATP: Adenosine Triphosphate
      1. 6.3.0: ATP: Adenosine Triphosphate
    4. 6.4: Enzymes
      1. 6.4.0: Enzyme Active Site and Substrate Specificity
      2. 6.4.1: Control of Metabolism Through Enzyme Regulation
  7. 7: Cellular Respiration
    1. 7.1: Energy in Living Systems
      1. 7.1.0: Transforming Chemical Energy
      2. 7.1.1: Electrons and Energy
      3. 7.1.2: ATP in Metabolism
    2. 7.2: Glycolysis
      1. 7.2.0: Importance of Glycolysis
      2. 7.2.1: The Energy-Requiring Steps of Glycolysis
      3. 7.2.2: The Energy-Releasing Steps of Glycolysis
      4. 7.2.3: Outcomes of Glycolysis
    3. 7.3: Oxidation of Pyruvate and the Citric Acid Cycle
      1. 7.3.0: Breakdown of Pyruvate
      2. 7.3.1: Acetyl CoA to CO2
      3. 7.3.2: Citric Acid Cycle
    4. 7.4: Oxidative Phosphorylation
      1. 7.4.0: Electron Transport Chain
      2. 7.4.1: Chemiosmosis and Oxidative Phosphorylation
      3. 7.4.2: ATP Yield
    5. 7.5: Metabolism without Oxygen
      1. 7.5.0: Anaerobic Cellular Respiration
    6. 7.6: Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      1. 7.6.0: Connecting Other Sugars to Glucose Metabolism
      2. 7.6.1: Connecting Proteins to Glucose Metabolism
      3. 7.6.2: Connecting Lipids to Glucose Metabolism
    7. 7.7: Regulation of Cellular Respiration
      1. 7.7.0: Regulatory Mechanisms for Cellular Respiration
      2. 7.7.1: Control of Catabolic Pathways
  8. 8: Photosynthesis
    1. 8.1: Overview of Photosynthesis
      1. 8.1.0: The Purpose and Process of Photosynthesis
      2. 8.1.1: Main Structures and Summary of Photosynthesis
      3. 8.1.2: The Two Parts of Photosynthesis
    2. 8.2: The Light-Dependent Reactions of Photosynthesis
      1. 8.2.0: Introduction to Light Energy
      2. 8.2.1: Absorption of Light
      3. 8.2.2: Processes of the Light-Dependent Reactions
    3. 8.3: The Light-Independent Reactions of Photosynthesis
      1. 8.3.0: CAM and C4 Photosynthesis
      2. 8.3.1: The Calvin Cycle
      3. 8.3.2: The Carbon Cycle
  9. 9: Cell Communication
    1. 9.1: Signaling Molecules and Cellular Receptors
      1. 9.1.0: Signaling Molecules and Cellular Receptors
      2. 9.1.1: Forms of Signaling
      3. 9.1.2: Types of Receptors
      4. 9.1.3: Signaling Molecules
    2. 9.2: Propagation of the Cellular Signal
      1. 9.2.0: Binding Initiates a Signaling Pathway
      2. 9.2.1: Methods of Intracellular Signaling
    3. 9.3: Response to the Cellular Signal
      1. 9.3.0: Termination of the Signal Cascade
      2. 9.3.1: Cell Signaling and Gene Expression
      3. 9.3.2: Cell Signaling and Cellular Metabolism
      4. 9.3.3: Cell Signaling and Cell Growth
      5. 9.3.4: Cell Signaling and Cell Death
    4. 9.4: Signaling in Single-Celled Organisms
      1. 9.4.0: Signaling in Yeast
      2. 9.4.1: Signaling in Bacteria
  10. 10: Cell Reproduction
    1. 10.1: Cell Division
      1. 10.1.0: The Role of the Cell Cycle
      2. 10.1.1: Genomic DNA and Chromosomes
      3. 10.1.2: Eukaryotic Chromosomal Structure and Compaction
    2. 10.2: The Cell Cycle
      1. 10.2.0: Interphase
      2. 10.2.1: The Mitotic Phase and the G0 Phase
    3. 10.3: Control of the Cell Cycle
      1. 10.3.0: Regulation of the Cell Cycle by External Events
      2. 10.3.1: Regulation of the Cell Cycle at Internal Checkpoints
      3. 10.3.2: Regulator Molecules of the Cell Cycle
    4. 10.4: Cancer and the Cell Cycle
      1. 10.4.0: Proto-oncogenes
      2. 10.4.1: Tumor Suppressor Genes
    5. 10.5: Prokaryotic Cell Division
      1. 10.5.0: Binary Fission
  11. 11: Meiosis and Sexual Reproduction
    1. 11.1: The Process of Meiosis
      1. 11.1.0: Introduction to Meiosis
      2. 11.1.1: Meiosis I
      3. 11.1.2: Meiosis II
      4. 11.1.3: Comparing Meiosis and Mitosis
    2. 11.2: Sexual Reproduction
      1. 11.2.0: Advantages and Disadvantages of Sexual Reproduction
      2. 11.2.1: Life Cycles of Sexually Reproducing Organisms
  12. 12: Mendel's Experiments and Heredity
    1. 12.1: Mendel’s Experiments and the Laws of Probability
      1. 12.1.0: Introduction to Mendelian Inheritance
      2. 12.1.1: Mendel’s Model System
      3. 12.1.2: Mendelian Crosses
      4. 12.1.3: Garden Pea Characteristics Revealed the Basics of Heredity
      5. 12.1.4: Rules of Probability for Mendelian Inheritance
    2. 12.2: Patterns of Inheritance
      1. 12.2.0: Genes as the Unit of Heredity
      2. 12.2.1: Phenotypes and Genotypes
      3. 12.2.2: The Punnett Square Approach for a Monohybrid Cross
      4. 12.2.3: Alternatives to Dominance and Recessiveness
      5. 12.2.4: Sex-Linked Traits
      6. 12.2.5: Lethal Inheritance Patterns
    3. 12.3: Laws of Inheritance
      1. 12.3.0: Mendel's Laws of Heredity
      2. 12.3.1: Mendel's Law of Dominance
      3. 12.3.2: Mendel's Law of Segregation
      4. 12.3.3: Mendel's Law of Independent Assortment
      5. 12.3.4: Genetic Linkage and Violation of the Law of Independent Assortment
      6. 12.3.5: Epistasis
  13. 13: Modern Understandings of Inheritance
    1. 13.1: Chromosomal Theory and Genetic Linkage
      1. 13.1.0: Chromosomal Theory of Inheritance
      2. 13.1.1: Genetic Linkage and Distances
      3. 13.1.2: Identification of Chromosomes and Karyotypes
    2. 13.2: Chromosomal Basis of Inherited Disorders
      1. 13.2.0: Disorders in Chromosome Number
      2. 13.2.1: Chromosomal Structural Rearrangements
      3. 13.2.2: X-Inactivation
  14. 14: DNA Structure and Function
    1. 14.1: Historical Basis of Modern Understanding
      1. 14.1.0: Discovery of DNA
      2. 14.1.1: Modern Applications of DNA
    2. 14.2: DNA Structure and Sequencing
      1. 14.2.0: The Structure and Sequence of DNA
      2. 14.2.1: DNA Sequencing Techniques
    3. 14.3: DNA Replication
      1. 14.3.0: Basics of DNA Replication
      2. 14.3.1: DNA Replication in Prokaryotes
      3. 14.3.2: DNA Replication in Eukaryotes
      4. 14.3.3: Telomere Replication
    4. 14.4: DNA Repair
      1. 14.4.0: DNA Repair
  15. 15: Genes and Proteins
    1. 15.1: The Genetic Code
      1. 15.1.0: The Relationship Between Genes and Proteins
      2. 15.1.1: The Central Dogma: DNA Encodes RNA and RNA Encodes Protein
    2. 15.2: Prokaryotic Transcription
      1. 15.2.0: Transcription in Prokaryotes
      2. 15.2.1: Initiation of Transcription in Prokaryotes
      3. 15.2.2: Elongation and Termination in Prokaryotes
    3. 15.3: Eukaryotic Transcription
      1. 15.3.0: Initiation of Transcription in Eukaryotes
      2. 15.3.1: Elongation and Termination in Eukaryotes
    4. 15.4: RNA Processing in Eukaryotes
      1. 15.4.0: mRNA Processing
      2. 15.4.1: Processing of tRNAs and rRNAs
    5. 15.5: Ribosomes and Protein Synthesis
      1. 15.5.0: The Protein Synthesis Machinery
      2. 15.5.1: The Mechanism of Protein Synthesis
      3. 15.5.2: Protein Folding, Modification, and Targeting
  16. 16: Gene Expression
    1. 16.1: Regulation of Gene Expression
      1. 16.1.0: The Process and Purpose of Gene Expression Regulation
      2. 16.1.1: Prokaryotic versus Eukaryotic Gene Expression
    2. 16.2: Prokaryotic Gene Regulation
      1. 16.2.0: The trp Operon: A Repressor Operon
      2. 16.2.1: Catabolite Activator Protein (CAP): An Activator Regulator
      3. 16.2.2: The lac Operon: An Inducer Operon
    3. 16.3: Eukaryotic Gene Regulation
      1. 16.3.0: The Promoter and the Transcription Machinery
      2. 16.3.1: Transcriptional Enhancers and Repressors
      3. 16.3.2: Epigenetic Control: Regulating Access to Genes within the Chromosome
      4. 16.3.3: RNA Splicing
      5. 16.3.4: The Initiation Complex and Translation Rate
      6. 16.3.5: Regulating Protein Activity and Longevity
    4. 16.4: Regulating Gene Expression in Cell Development
      1. 16.4.0: Gene Expression in Stem Cells
      2. 16.4.1: Cellular Differentiation
      3. 16.4.2: Mechanics of Cellular Differentation
      4. 16.4.3: Establishing Body Axes during Development
      5. 16.4.4: Gene Expression for Spatial Positioning
      6. 16.4.5: Cell Migration in Multicellular Organisms
      7. 16.4.6: Programmed Cell Death
    5. 16.5: Cancer and Gene Regulation
      1. 16.5.0: Altered Gene Expression in Cancer
      2. 16.5.1: Epigenetic Alterations in Cancer
      3. 16.5.2: Cancer and Transcriptional Control
      4. 16.5.3: Cancer and Post-Transcriptional Control
      5. 16.5.4: Cancer and Translational Control
  17. 17: Biotechnology and Genomics
    1. 17.1: Biotechnology
      1. 17.1.0: Biotechnology
      2. 17.1.1: Basic Techniques to Manipulate Genetic Material (DNA and RNA)
      3. 17.1.2: Molecular and Cellular Cloning
      4. 17.1.3: Reproductive Cloning
      5. 17.1.4: Genetic Engineering
      6. 17.1.5: Genetically Modified Organisms (GMOs)
      7. 17.1.6: Biotechnology in Medicine
      8. 17.1.7: Production of Vaccines, Antibiotics, and Hormones
    2. 17.2: Mapping Genomes
      1. 17.2.0: Genetic Maps
      2. 17.2.1: Physical Maps and Integration with Genetic Maps
    3. 17.3: Whole-Genome Sequencing
      1. 17.3.0: Strategies Used in Sequencing Projects
      2. 17.3.1: Use of Whole-Genome Sequences of Model Organisms
      3. 17.3.2: Uses of Genome Sequences
    4. 17.4: Applying Genomics
      1. 17.4.0: Predicting Disease Risk at the Individual Level
      2. 17.4.1: Pharmacogenomics, Toxicogenomics, and Metagenomics
      3. 17.4.2: Genomics and Biofuels
    5. 17.5: Genomics and Proteomics
      1. 17.5.0: Genomics and Proteomics
      2. 17.5.1: Basic Techniques in Protein Analysis
      3. 17.5.2: Cancer Proteomics
  18. 18: Evolution and the Origin of Species
    1. 18.1: Understanding Evolution
      1. 18.1.0: What is Evolution?
      2. 18.1.1: Charles Darwin and Natural Selection
      3. 18.1.2: The Galapagos Finches and Natural Selection
      4. 18.1.3: Processes and Patterns of Evolution
      5. 18.1.4: Evidence of Evolution
      6. 18.1.5: Misconceptions of Evolution
    2. 18.2: Formation of New Species
      1. 18.2.0: The Biological Species Concept
      2. 18.2.1: Reproductive Isolation
      3. 18.2.2: Speciation
      4. 18.2.3: Allopatric Speciation
      5. 18.2.4: Sympatric Speciation
    3. 18.3: Hybrid Zones and Rates of Speciation
      1. 18.3.0: Hybrid Zones
      2. 18.3.1: Varying Rates of Speciation
    4. 18.4: Evolution of Genomes
      1. 18.4.0: Genomic Similiarities between Distant Species
      2. 18.4.1: Genome Evolution
      3. 18.4.2: Whole-Genome Duplication
      4. 18.4.3: Gene Duplications and Divergence
      5. 18.4.4: Noncoding DNA
      6. 18.4.5: Variations in Size and Number of Genes
    5. 18.5: Evidence of Evolution
      1. 18.5.0: The Fossil Record as Evidence for Evolution
      2. 18.5.1: Fossil Formation
      3. 18.5.2: Gaps in the Fossil Record
      4. 18.5.3: Carbon Dating and Estimating Fossil Age
      5. 18.5.4: The Fossil Record and the Evolution of the Modern Horse
      6. 18.5.5: Homologous Structures
      7. 18.5.6: Convergent Evolution
      8. 18.5.7: Vestigial Structures
      9. 18.5.8: Biogeography and the Distribution of Species
  19. 19: The Evolution of Populations
    1. 19.1: Population Evolution
      1. 19.1.0: Defining Population Evolution
      2. 19.1.1: Population Genetics
      3. 19.1.2: Hardy-Weinberg Principle of Equilibrium
    2. 19.2: Population Genetics
      1. 19.2.0: Genetic Variation
      2. 19.2.1: Genetic Drift
      3. 19.2.2: Gene Flow and Mutation
      4. 19.2.3: Nonrandom Mating and Environmental Variance
    3. 19.3: Adaptive Evolution
      1. 19.3.0: Natural Selection and Adaptive Evolution
      2. 19.3.1: Stabilizing, Directional, and Diversifying Selection
      3. 19.3.2: Frequency-Dependent Selection
      4. 19.3.3: Sexual Selection
      5. 19.3.4: No Perfect Organism
  20. 20: Phylogenies and the History of Life
    1. 20.1: Organizing Life on Earth
      1. 20.1.0: Phylogenetic Trees
      2. 20.1.1: Limitations of Phylogenetic Trees
      3. 20.1.2: The Levels of Classification
    2. 20.2: Determining Evolutionary Relationships
      1. 20.2.0: Distinguishing between Similar Traits
      2. 20.2.1: Building Phylogenetic Trees
    3. 20.3: Perspectives on the Phylogenetic Tree
      1. 20.3.0: Limitations to the Classic Model of Phylogenetic Trees
      2. 20.3.1: Horizontal Gene Transfer
      3. 20.3.2: Endosymbiotic Theory and the Evolution of Eukaryotes
      4. 20.3.3: Web, Network, and Ring of Life Models
  21. 21: Viruses
    1. 21.1: Viral Evolution, Morphology, and Classification
      1. 21.1.0: Discovery and Detection of Viruses
      2. 21.1.1: Evolution of Viruses
      3. 21.1.2: Viral Morphology
      4. 21.1.3: Virus Classification
    2. 21.2: Virus Infections and Hosts
      1. 21.2.0: Steps of Virus Infections
      2. 21.2.1: The Lytic and Lysogenic Cycles of Bacteriophages
      3. 21.2.2: Animal Viruses
      4. 21.2.3: Plant Viruses
    3. 21.3: Prevention and Treatment of Viral Infections
      1. 21.3.0: Vaccines and Immunity
      2. 21.3.1: Vaccines and Anti-Viral Drugs for Treatment
    4. 21.4: Prions and Viroids
      1. 21.4.0: Prions and Viroids
  22. 22: Prokaryotes: Bacteria and Archaea
    1. 22.1: Prokaryotic Diversity
      1. 22.1.0: Classification of Prokaryotes
      2. 22.1.1: The Origins of Archaea and Bacteria
      3. 22.1.2: Extremophiles and Biofilms
    2. 22.2: Structure of Prokaryotes
      1. 22.2.0: Basic Structures of Prokaryotic Cells
      2. 22.2.1: Prokaryotic Reproduction
    3. 22.3: Prokaryotic Metabolism
      1. 22.3.0: Energy and Nutrient Requirements for Prokaryotes
      2. 22.3.1: The Role of Prokaryotes in Ecosystems
    4. 22.4: Bacterial Diseases in Humans
      1. 22.4.0: History of Bacterial Diseases
      2. 22.4.1: Biofilms and Disease
      3. 22.4.2: Antibiotics: Are We Facing a Crisis?
      4. 22.4.3: Bacterial Foodborne Diseases
    5. 22.5: Beneficial Prokaryotes
      1. 22.5.0: Symbiosis between Bacteria and Eukaryotes
      2. 22.5.1: Early Biotechnology: Cheese, Bread, Wine, Beer, and Yogurt
      3. 22.5.2: Prokaryotes and Environmental Bioremediation
  23. 23: Protists
    1. 23.1: Eukaryotic Origins
      1. 23.1.0: Early Eukaryotes
      2. 23.1.1: Characteristics of Eukaryotic DNA
      3. 23.1.2: Endosymbiosis and the Evolution of Eukaryotes
      4. 23.1.3: The Evolution of Mitochondria
      5. 23.1.4: The Evolution of Plastids
    2. 23.2: Characteristics of Protists
      1. 23.2.0: Cell Structure, Metabolism, and Motility
      2. 23.2.1: Protist Life Cycles and Habitats
    3. 23.3: Groups of Protists
      1. 23.3.0: Excavata
      2. 23.3.1: Chromalveolata: Alveolates
      3. 23.3.2: Chromalveolata: Stramenopiles
      4. 23.3.3: Rhizaria
      5. 23.3.4: Archaeplastida
      6. 23.3.5: Amoebozoa and Opisthokonta
    4. 23.4: Ecology of Protists
      1. 23.4.0: Protists as Primary Producers, Food Sources, and Symbionts
      2. 23.4.1: Protists as Human Pathogens
      3. 23.4.2: Protists as Plant Pathogens
  24. 24: Fungi
    1. 24.1: Characteristics of Fungi
      1. 24.1.0: Characteristics of Fungi
      2. 24.1.1: Fungi Cell Structure and Function
      3. 24.1.2: Fungi Reproduction
    2. 24.2: Ecology of Fungi
      1. 24.2.0: Fungi Habitat, Decomposition, and Recycling
      2. 24.2.1: Mutualistic Relationships with Fungi and Fungivores
    3. 24.3: Classifications of Fungi
      1. 24.3.0: Chytridiomycota: The Chytrids
      2. 24.3.1: Zygomycota: The Conjugated Fungi
      3. 24.3.2: Ascomycota: The Sac Fungi
      4. 24.3.3: Basidiomycota: The Club Fungi
      5. 24.3.4: Deuteromycota: The Imperfect Fungi
      6. 24.3.5: Glomeromycota
    4. 24.4: Fungal Parasites and Pathogens
      1. 24.4.0: Fungi as Plant, Animal, and Human Pathogens
    5. 24.5: Importance of Fungi in Human Life
      1. 24.5.0: Importance of Fungi in Human Life
  25. 25: Seedless Plants
    1. 25.1: Early Plant Life
      1. 25.1.0: Early Plant Life
      2. 25.1.1: Evolution of Land Plants
      3. 25.1.2: Plant Adaptations to Life on Land
      4. 25.1.3: Sporophytes and Gametophytes in Seedless Plants
      5. 25.1.4: Structural Adaptations for Land in Seedless Plants
      6. 25.1.5: The Major Divisions of Land Plants
    2. 25.2: Green Algae: Precursors of Land Plants
      1. 25.2.0: Streptophytes and Reproduction of Green Algae
      2. 25.2.1: Charales
    3. 25.3: Bryophytes
      1. 25.3.0: Bryophytes
      2. 25.3.1: Liverworts and Hornworts
      3. 25.3.2: Mosses
    4. 25.4: Seedless Vascular Plants
      1. 25.4.0: Seedless Vascular Plants
      2. 25.4.1: Vascular Tissue: Xylem and Phloem
      3. 25.4.2: The Evolution of Roots in Seedless Plants
      4. 25.4.3: Ferns and Other Seedless Vascular Plants
      5. 25.4.4: The Importance of Seedless Vascular Plants
  26. 26: Seed Plants
    1. 26.1: Evolution of Seed Plants
      1. 26.1.0: The Evolution of Seed Plants and Adaptations for Land
      2. 26.1.1: Evolution of Gymnosperms
      3. 26.1.2: Evolution of Angiosperms
    2. 26.2: Gymnosperms
      1. 26.2.0: Characteristics of Gymnosperms
      2. 26.2.1: Life Cycle of a Conifer
      3. 26.2.2: Diversity of Gymnosperms
    3. 26.3: Angiosperms
      1. 26.3.0: Angiosperm Flowers
      2. 26.3.1: Angsiosperm Fruit
      3. 26.3.2: The Life Cycle of an Angiosperm
      4. 26.3.3: Diversity of Angiosperms
    4. 26.4: The Role of Seed Plants
      1. 26.4.0: Herbivory and Pollination
      2. 26.4.1: The Importance of Seed Plants in Human Life
      3. 26.4.2: Biodiversity of Plants
  27. 27: Introduction to Animal Diversity
    1. 27.1: Features of the Animal Kingdom
      1. 27.1.0: Characteristics of the Animal Kingdom
      2. 27.1.1: Complex Tissue Structure
      3. 27.1.2: Animal Reproduction and Development
    2. 27.2: Features Used to Classify Animals
      1. 27.2.0: Animal Characterization Based on Body Symmetry
      2. 27.2.1: Animal Characterization Based on Features of Embryological Development
    3. 27.3: Animal Phylogeny
      1. 27.3.0: Constructing an Animal Phylogenetic Tree
      2. 27.3.1: Molecular Analyses and Modern Phylogenetic Trees
    4. 27.4: The Evolutionary History of the Animal Kingdom
      1. 27.4.0: Pre-Cambrian Animal Life
      2. 27.4.1: The Cambrian Explosion of Animal Life
      3. 27.4.2: Post-Cambrian Evolution and Mass Extinctions
  28. 28: Invertebrates
    1. 28.1: Phylum Porifera
      1. 28.1.0: Phylum Porifera
      2. 28.1.1: Morphology of Sponges
      3. 28.1.2: Physiological Processes in Sponges
    2. 28.2: Phylum Cnidaria
      1. 28.2.0: Phylum Cnidaria
      2. 28.2.1: Class Anthozoa
      3. 28.2.2: Class Scyphozoa
      4. 28.2.3: Class Cubozoa and Class Hydrozoa
    3. 28.3: Superphylum Lophotrochozoa
      1. 28.3.0: Superphylum Lophotrochozoa
      2. 28.3.1: Phylum Platyhelminthes
      3. 28.3.2: Phylum Rotifera
      4. 28.3.3: Phylum Nemertea
      5. 28.3.4: Phylum Mollusca
      6. 28.3.5: Classification of Phylum Mollusca
      7. 28.3.6: Phylum Annelida
    4. 28.4: Superphylum Ecdysozoa
      1. 28.4.0: Superphylum Ecdysozoa
      2. 28.4.1: Phylum Nematoda
      3. 28.4.2: Phylum Arthropoda
      4. 28.4.3: Subphyla of Arthropoda
    5. 28.5: Superphylum Deuterostomia
      1. 28.5.0: Phylum Echinodermata
      2. 28.5.1: Classes of Echinoderms
      3. 28.5.2: Phylum Chordata
  29. 29: Vertebrates
    1. 29.1: Chordates
      1. 29.1.0: Characteristics of Chordata
      2. 29.1.1: Chordates and the Evolution of Vertebrates
      3. 29.1.2: The Evolution of Craniata and Vertebrata
      4. 29.1.3: Characteristics of Vertebrates
    2. 29.2: Fishes
      1. 29.2.0: Agnathans: Jawless Fishes
      2. 29.2.1: Gnathostomes: Jawed Fishes
    3. 29.3: Amphibians
      1. 29.3.0: Characteristics and Evolution of Amphibians
      2. 29.3.1: Modern Amphibians
    4. 29.4: Reptiles
      1. 29.4.0: Characteristics of Amniotes
      2. 29.4.1: Evolution of Amniotes
      3. 29.4.2: Characteristics of Reptiles
      4. 29.4.3: Evolution of Reptiles
      5. 29.4.4: Modern Reptiles
    5. 29.5: Birds
      1. 29.5.0: Characteristics of Birds
      2. 29.5.1: Evolution of Birds
    6. 29.6: Mammals
      1. 29.6.0: Characteristics of Mammals
      2. 29.6.1: Evolution of Mammals
      3. 29.6.2: Living Mammals
    7. 29.7: The Evolution of Primates
      1. 29.7.0: Characteristics and Evolution of Primates
      2. 29.7.1: Early Human Evolution
      3. 29.7.2: Early Hominins
      4. 29.7.3: Genus Homo
  30. 30: Plant Form and Physiology
    1. 30.1: The Plant Body
      1. 30.1.0: Plant Tissues and Organ Systems
    2. 30.2: Stems
      1. 30.2.0: Functions of Stems
      2. 30.2.1: Stem Anatomy
      3. 30.2.2: Primary and Secondary Growth in Stems
      4. 30.2.3: Stem Modifications
    3. 30.3: Roots
      1. 30.3.0: Types of Root Systems and Zones of Growth
      2. 30.3.1: Root Modifications
    4. 30.4: Leaves
      1. 30.4.0: Leaf Structure and Arrangment
      2. 30.4.1: Types of Leaf Forms
      3. 30.4.2: Leaf Structure, Function, and Adaptation
    5. 30.5: Plant Development
      1. 30.5.0: Meristems
      2. 30.5.1: Genetic Control of Flowers
    6. 30.6: Transport of Water and Solutes in Plants
      1. 30.6.0: Water and Solute Potential
      2. 30.6.1: Pressure, Gravity, and Matric Potential
      3. 30.6.2: Movement of Water and Minerals in the Xylem
      4. 30.6.3: Transportation of Photosynthates in the Phloem
    7. 30.7: Plant Sensory Systems and Responses
      1. 30.7.0: Plant Responses to Light
      2. 30.7.1: The Phytochrome System and Red Light Response
      3. 30.7.2: Blue Light Response
      4. 30.7.3: Plant Responses to Gravity
      5. 30.7.4: Auxins, Cytokinins, and Gibberellins
      6. 30.7.5: Abscisic Acid, Ethylene, and Nontraditional Hormones
      7. 30.7.6: Plant Responses to Wind and Touch
    8. 30.8: Plant Defense Mechanisms
      1. 30.8.0: Plant Defenses Against Herbivores
      2. 30.8.1: Plant Defenses Against Pathogens
  31. 31: Soil and Plant Nutrition
    1. 31.1: Nutritional Requirements of Plants
      1. 31.1.0: Plant Nutrition
      2. 31.1.1: The Chemical Composition of Plants
      3. 31.1.2: Essential Nutrients for Plants
    2. 31.2: The Soil
      1. 31.2.0: Soil Composition
      2. 31.2.1: Soil Formation
      3. 31.2.2: Physical Properties of Soil
    3. 31.3: Nutritional Adaptations of Plants
      1. 31.3.0: Nitrogen Fixation: Root and Bacteria Interactions
      2. 31.3.1: Mycorrhizae: The Symbiotic Relationship between Fungi and Roots
      3. 31.3.2: Nutrients from Other Sources
  32. 32: Plant Reproduction
    1. 32.1: Plant Reproductive Development and Structure
      1. 32.1.0: Plant Reproductive Development and Structure
      2. 32.1.1: Sexual Reproduction in Gymnosperms
      3. 32.1.2: Sexual Reproduction in Angiosperms
    2. 32.2: Pollination and Fertilization
      1. 32.2.0: Pollination and Fertilization
      2. 32.2.1: Pollination by Insects
      3. 32.2.2: Pollination by Bats, Birds, Wind, and Water
      4. 32.2.3: Double Fertilization in Plants
      5. 32.2.4: Development of the Seed
      6. 32.2.5: Development of Fruit and Fruit Types
      7. 32.2.6: Fruit and Seed Dispersal
    3. 32.3: Asexual Reproduction
      1. 32.3.0: Asexual Reproduction in Plants
      2. 32.3.1: Natural and Artificial Methods of Asexual Reproduction in Plants
      3. 32.3.2: Plant Life Spans
  33. 33: The Animal Body: Basic Form and Function
    1. 33.1: Animal Form and Function
      1. 33.1.0: Characteristics of the Animal Body
      2. 33.1.1: Body Plans
      3. 33.1.2: Limits on Animal Size and Shape
      4. 33.1.3: Limiting Effects of Diffusion on Size and Development
      5. 33.1.4: Animal Bioenergetics
      6. 33.1.5: Animal Body Planes and Cavities
    2. 33.2: Animal Primary Tissues
      1. 33.2.0: Epithelial Tissues
      2. 33.2.1: Connective Tissues: Loose, Fibrous, and Cartilage
      3. 33.2.2: Connective Tissues: Bone, Adipose, and Blood
      4. 33.2.3: Muscle Tissues and Nervous Tissues
    3. 33.3: Homeostasis
      1. 33.3.0: Homeostatic Process
      2. 33.3.1: Control of Homeostasis
      3. 33.3.2: Homeostasis: Thermoregulation
      4. 33.3.3: Heat Conservation and Dissipation
  34. 34: Animal Nutrition and the Digestive System
    1. 34.1: Digestive Systems
      1. 34.1.0: Digestive Systems
      2. 34.1.1: Herbivores, Omnivores, and Carnivores
      3. 34.1.2: Invertebrate Digestive Systems
      4. 34.1.3: Vertebrate Digestive Systems
      5. 34.1.4: Digestive System: Mouth and Stomach
      6. 34.1.5: Digestive System: Small and Large Intestines
    2. 34.2: Nutrition and Energy Production
      1. 34.2.0: Food Requirements and Essential Nutrients
      2. 34.2.1: Food Energy and ATP
    3. 34.3: Digestive System Processes
      1. 34.3.0: Ingestion
      2. 34.3.1: Digestion and Absorption
      3. 34.3.2: Elimination
    4. 34.4: Digestive System Regulation
      1. 34.4.0: Neural Responses to Food
      2. 34.4.1: Hormonal Responses to Food
  35. 35: The Nervous System
    1. 35.1: Neurons and Glial Cells
      1. 35.1.0: Neurons and Glial Cells
      2. 35.1.1: Neurons
      3. 35.1.2: Glia
    2. 35.2: How Neurons Communicate
      1. 35.2.0: Nerve Impulse Transmission within a Neuron: Resting Potential
      2. 35.2.1: Nerve Impulse Transmission within a Neuron: Action Potential
      3. 35.2.2: Synaptic Transmission
      4. 35.2.3: Signal Summation
      5. 35.2.4: Synaptic Plasticity
    3. 35.3: The Nervous System
      1. 35.3.0: The Nervous System
    4. 35.4: The Central Nervous System
      1. 35.4.0: Brain: Cerebral Cortex and Brain Lobes
      2. 35.4.1: Brain: Midbrain and Brain Stem
      3. 35.4.2: Spinal Cord
    5. 35.5: The Peripheral Nervous System
      1. 35.5.0: Autonomic Nervous System
      2. 35.5.1: Sensory-Somatic Nervous System
    6. 35.6: Nervous System Disorders
      1. 35.6.0: Neurodegenerative Disorders
      2. 35.6.1: Neurodevelopmental Disorders: Autism and ADHD
      3. 35.6.2: Neurodevelopmental Disorders: Mental Illnesses
      4. 35.6.3: Other Neurological Disorders
  36. 36: Sensory Systems
    1. 36.1: Sensory Processes
      1. 36.1.0: Reception
      2. 36.1.1: Transduction and Perception
    2. 36.2: Somatosensation
      1. 36.2.0: Somatosensory Receptors
      2. 36.2.1: Integration of Signals from Mechanoreceptors
      3. 36.2.2: Thermoreception
    3. 36.3: Taste and Smell
      1. 36.3.0: Tastes and Odors
      2. 36.3.1: Reception and Transduction
    4. 36.4: Hearing and Vestibular Sensation
      1. 36.4.0: Sound
      2. 36.4.1: Reception of Sound
      3. 36.4.2: Transduction of Sound
      4. 36.4.3: The Vestibular System
      5. 36.4.4: Balance and Determining Equilibrium
    5. 36.5: Vision
      1. 36.5.0: Light
      2. 36.5.1: Anatomy of the Eye
      3. 36.5.2: Transduction of Light
      4. 36.5.3: Visual Processing
  37. 37: The Endocrine System
    1. 37.1: Types of Hormones
      1. 37.1.0: Hormone Functions
      2. 37.1.1: Lipid-Derived, Amino Acid-Derived, and Peptide Hormones
    2. 37.2: How Hormones Work
      1. 37.2.0: How Hormones Work
      2. 37.2.1: Intracellular Hormone Receptors
      3. 37.2.2: Plasma Membrane Hormone Receptors
    3. 37.3: Regulation of Body Processes
      1. 37.3.0: Hormonal Regulation of the Excretory System
      2. 37.3.1: Hormonal Regulation of the Reproductive System
      3. 37.3.2: Hormonal Regulation of Metabolism
      4. 37.3.3: Hormonal Control of Blood Calcium Levels
      5. 37.3.4: Hormonal Regulation of Growth
      6. 37.3.5: Hormonal Regulation of Stress
    4. 37.4: Regulation of Hormone Production
      1. 37.4.0: Humoral, Hormonal, and Neural Stimuli
    5. 37.5: Endocrine Glands
      1. 37.5.0: Hypothalamic-Pituitary Axis
      2. 37.5.1: Thyroid Gland
      3. 37.5.2: Parathyroid Glands
      4. 37.5.3: Adrenal Glands
      5. 37.5.4: Pancreas
      6. 37.5.5: Pineal Gland and Gonads
      7. 37.5.6: Organs with Secondary Endocrine Functions
  38. 38: The Musculoskeletal System
    1. 38.1: Types of Skeletal Systems
      1. 38.1.0: Functions of the Musculoskeletal System
      2. 38.1.1: Types of Skeletal Systems
      3. 38.1.2: Human Axial Skeleton
      4. 38.1.3: Human Appendicular Skeleton
    2. 38.2: Bone
      1. 38.2.0: Bone
      2. 38.2.1: Cell Types in Bones
      3. 38.2.2: Bone Development
      4. 38.2.3: Growth of Bone
      5. 38.2.4: Bone Remodeling and Repair
    3. 38.3: Joints and Skeletal Movement
      1. 38.3.0: Classification of Joints on the Basis of Structure and Function
      2. 38.3.1: Movement at Synovial Joints
      3. 38.3.2: Types of Synovial Joints
      4. 38.3.3: Bone and Joint Disorders
    4. 38.4: Muscle Contraction and Locomotion
      1. 38.4.0: Structure and Function of the Muscular System
      2. 38.4.1: Skeletal Muscle Fibers
      3. 38.4.2: Sliding Filament Model of Contraction
      4. 38.4.3: ATP and Muscle Contraction
      5. 38.4.4: Regulatory Proteins
      6. 38.4.5: Excitation–Contraction Coupling
      7. 38.4.6: Control of Muscle Tension
  39. 39: The Respiratory System
    1. 39.1: Systems of Gas Exchange
      1. 39.1.0: The Respiratory System and Direct Diffusion
      2. 39.1.1: Skin, Gills, and Tracheal Systems
      3. 39.1.2: Amphibian and Bird Respiratory Systems
      4. 39.1.3: Mammalian Systems and Protective Mechanisms
    2. 39.2: Gas Exchange across Respiratory Surfaces
      1. 39.2.0: Gas Pressure and Respiration
      2. 39.2.1: Basic Principles of Gas Exchange
      3. 39.2.2: Lung Volumes and Capacities
      4. 39.2.3: Gas Exchange across the Alveoli
    3. 39.3: Breathing
      1. 39.3.0: The Mechanics of Human Breathing
      2. 39.3.1: Types of Breathing
      3. 39.3.2: The Work of Breathing
      4. 39.3.3: Dead Space: V/Q Mismatch
    4. 39.4: Transport of Gases in Human Bodily Fluids
      1. 39.4.0: Transport of Oxygen in the Blood
      2. 39.4.1: Transport of Carbon Dioxide in the Blood
  40. 40: The Circulatory System
    1. 40.1: Overview of the Circulatory System
      1. 40.1.0: The Role of the Circulatory System
      2. 40.1.1: Open and Closed Circulatory Systems
      3. 40.1.2: Types of Circulatory Systems in Animals
    2. 40.2: Components of the Blood
      1. 40.2.0: The Role of Blood in the Body
      2. 40.2.1: Red Blood Cells
      3. 40.2.2: White Blood Cells
      4. 40.2.3: Platelets and Coagulation Factors
      5. 40.2.4: Plasma and Serum
    3. 40.3: Mammalian Heart and Blood Vessels
      1. 40.3.0: Structures of the Heart
      2. 40.3.1: Arteries, Veins, and Capillaries
      3. 40.3.2: The Cardiac Cycle
    4. 40.4: Blood Flow and Blood Pressure Regulation
      1. 40.4.0: Blood Flow Through the Body
      2. 40.4.1: Blood Pressure
  41. 41: Osmotic Regulation and the Excretory System
    1. 41.1: Osmoregulation and Osmotic Balance
      1. 41.1.0: Introduction to Osmoregulation
      2. 41.1.1: Transport of Electrolytes across Cell Membranes
      3. 41.1.2: Concept of Osmolality and Milliequivalent
      4. 41.1.3: Osmoregulators and Osmoconformers
    2. 41.2: Nitrogenous Wastes
      1. 41.2.0: Nitrogenous Waste in Terrestrial Animals: The Urea Cycle
      2. 41.2.1: Nitrogenous Waste in Birds and Reptiles: Uric Acid
    3. 41.3: Excretion Systems
      1. 41.3.0: Contractile Vacuoles in Microorganisms
      2. 41.3.1: Flame Cells of Planaria and Nephridia of Worms
      3. 41.3.2: Malpighian Tubules of Insects
    4. 41.4: Human Osmoregulatory and Excretory Systems
      1. 41.4.0: Kidney Structure
      2. 41.4.1: Nephron: The Functional Unit of the Kidney
      3. 41.4.2: Kidney Function and Physiology
    5. 41.5: Hormonal Control of Osmoregulatory Functions
      1. 41.5.0: Epinephrine and Norepinephrine
      2. 41.5.1: Other Hormonal Controls for Osmoregulation
  42. 42: The Immune System
    1. 42.1: Innate Immune Response
      1. 42.1.0: Innate Immune Response
      2. 42.1.1: Physical and Chemical Barriers
      3. 42.1.2: Pathogen Recognition
      4. 42.1.3: Natural Killer Cells
      5. 42.1.4: The Complement System
    2. 42.2: Adaptive Immune Response
      1. 42.2.0: Antigen-presenting Cells: B and T cells
      2. 42.2.1: Humoral Immune Response
      3. 42.2.2: Cell-Mediated Immunity
      4. 42.2.3: Cytotoxic T Lymphocytes and Mucosal Surfaces
      5. 42.2.4: Immunological Memory
      6. 42.2.5: Regulating Immune Tolerance
    3. 42.3: Antibodies
      1. 42.3.0: Antibody Structure
      2. 42.3.1: Antibody Functions
    4. 42.4: Disruptions in the Immune System
      1. 42.4.0: Immunodeficiency
      2. 42.4.1: Hypersensitivities
  43. 43: Animal Reproduction and Development
    1. 43.1: Reproduction Methods
      1. 43.1.0: Methods of Reproducing
      2. 43.1.1: Types of Sexual and Asexual Reproduction
      3. 43.1.2: Sex Determination
    2. 43.2: Fertilization
      1. 43.2.0: External and Internal Fertilization
      2. 43.2.1: The Evolution of Reproduction
    3. 43.3: Human Reproductive Anatomy and Gametogenesis
      1. 43.3.0: Male Reproductive Anatomy
      2. 43.3.1: Female Reproductive Anatomy
      3. 43.3.2: Gametogenesis (Spermatogenesis and Oogenesis)
    4. 43.4: Hormonal Control of Human Reproduction
      1. 43.4.0: Male Hormones
      2. 43.4.1: Female Hormones
    5. 43.5: Fertilization and Early Embryonic Development
      1. 43.5.0: Fertilization
      2. 43.5.1: Cleavage, the Blastula Stage, and Gastrulation
    6. 43.6: Organogenesis and Vertebrate Formation
      1. 43.6.0: Organogenesis
      2. 43.6.1: Vertebrate Axis Formation
    7. 43.7: Human Pregnancy and Birth
      1. 43.7.0: Human Gestation
      2. 43.7.1: Labor and Birth
      3. 43.7.2: Contraception and Birth Control
      4. 43.7.3: Infertility
  44. 44: Ecology and the Biosphere
    1. 44.1: The Scope of Ecology
      1. 44.1.0: Introduction to Ecology
      2. 44.1.1: Organismal Ecology and Population Ecology
      3. 44.1.2: Community Ecology and Ecosystem Ecology
    2. 44.2: Biogeography
      1. 44.2.0: Biogeography
      2. 44.2.1: Energy Sources
      3. 44.2.2: Temperature and Water
      4. 44.2.3: Inorganic Nutrients and Other Factors
      5. 44.2.4: Abiotic Factors Influencing Plant Growth
    3. 44.3: Terrestrial Biomes
      1. 44.3.0: What constitutes a biome?
      2. 44.3.1: Tropical Wet Forest and Savannas
      3. 44.3.2: Subtropical Deserts and Chaparral
      4. 44.3.3: Temperate Grasslands
      5. 44.3.4: Temperate Forests
      6. 44.3.5: Boreal Forests and Arctic Tundra
    4. 44.4: Aquatic Biomes
      1. 44.4.0: Abiotic Factors Influencing Aquatic Biomes
      2. 44.4.1: Marine Biomes
      3. 44.4.2: Estuaries: Where the Ocean Meets Fresh Water
      4. 44.4.3: Freshwater Biomes
    5. 44.5: Climate and the Effects of Global Climate Change
      1. 44.5.0: Climate and Weather
      2. 44.5.1: Causes of Global Climate Change
      3. 44.5.2: Evidence of Global Climate Change
      4. 44.5.3: Past and Present Effects of Climate Change
  45. 45: Population and Community Ecology
    1. 45.1: Population Demography
      1. 45.1.0: Population Demography
      2. 45.1.1: Population Size and Density
      3. 45.1.2: Species Distribution
      4. 45.1.3: The Study of Population Dynamics
    2. 45.2: Environmental Limits to Population Growth
      1. 45.2.0: Exponential Population Growth
      2. 45.2.1: Logistic Population Growth
      3. 45.2.2: Density-Dependent and Density-Independent Population Regulation
    3. 45.3: Life History Patterns
      1. 45.3.0: Life History Patterns and Energy Budgets
      2. 45.3.1: Theories of Life History
    4. 45.4: Human Population Growth
      1. 45.4.0: Human Population Growth
      2. 45.4.1: Overcoming Density-Dependent Regulation
      3. 45.4.2: Age Structure, Population Growth, and Economic Development
    5. 45.5: Community Ecology
      1. 45.5.0: The Role of Species within Communities
      2. 45.5.1: Predation, Herbivory, and the Competitive Exclusion Principle
      3. 45.5.2: Symbiosis
      4. 45.5.3: Ecological Succession
    6. 45.6: Innate Animal Behavior
      1. 45.6.0: Introduction to Animal Behavior
      2. 45.6.1: Movement and Migration
      3. 45.6.2: Animal Communication and Living in Groups
      4. 45.6.3: Altruism and Populations
      5. 45.6.4: Mating Systems and Sexual Selection
    7. 45.7: Learned Animal Behavior
      1. 45.7.0: Simple Learned Behaviors
      2. 45.7.1: Conditioned Behavior
      3. 45.7.2: Cognitive Learning and Sociobiology
  46. 46: Ecosystems
    1. 46.1: Ecology of Ecosystems
      1. 46.1.0: Ecosystem Dynamics
      2. 46.1.1: Food Chains and Food Webs
      3. 46.1.2: Studying Ecosystem Dynamics
      4. 46.1.3: Modeling Ecosystem Dynamics
    2. 46.2: Energy Flow through Ecosystems
      1. 46.2.0: Strategies for Acquiring Energy
      2. 46.2.1: Productivity within Trophic Levels
      3. 46.2.2: Transfer of Energy between Trophic Levels
      4. 46.2.3: Ecological Pyramids
      5. 46.2.4: Biological Magnification
    3. 46.3: Biogeochemical Cycles
      1. 46.3.0: Biogeochemical Cycles
      2. 46.3.1: The Water (Hydrologic) Cycle
      3. 46.3.2: The Carbon Cycle
      4. 46.3.3: The Nitrogen Cycle
      5. 46.3.4: The Phosphorus Cycle
      6. 46.3.5: The Sulfur Cycle
  47. 47: Conservation Biology and Biodiversity
    1. 47.1: The Biodiversity Crisis
      1. 47.1.0: Loss of Biodiversity
      2. 47.1.1: Types of Biodiversity
      3. 47.1.2: Biodiversity Change through Geological Time
      4. 47.1.3: The Pleistocene Extinction
      5. 47.1.4: Present-Time Extinctions
    2. 47.2: The Importance of Biodiversity to Human Life
      1. 47.2.0: Human Health and Biodiversity
      2. 47.2.1: Agricultural Diversity
      3. 47.2.2: Managing Fisheries
    3. 47.3: Threats to Biodiversity
      1. 47.3.0: Habitat Loss and Sustainability
      2. 47.3.1: Overharvesting
      3. 47.3.2: Exotic Species
      4. 47.3.3: Climate Change and Biodiversity
    4. 47.4: Preserving Biodiversity
      1. 47.4.0: Measuring Biodiversity
      2. 47.4.1: Changing Human Behavior in Response to Biodiversity Loss
      3. 47.4.2: Ecological Restoration

45.7: Learned Animal Behavior

45.7.1: Simple Learned Behaviors

Simple learned behaviors include habituation and imprinting, both of which are important to the maturation process of young animals.

Learning Objective

Distinguish between the simple learned behaviors of habituation and imprinting

Key Points

  • Learned behaviors stand in opposition to innate behaviors: while learned behaviors may have an innate component, they allow the organism to modify its behavior according to environmental factors or previous experiences.
  • Habituation is a simple form of learning in which an animal stops responding to a stimulus after a period of repeated exposure; it is a form of non-associative learning, as the stimulus is not associated with any punishment or reward.
  • Imprinting is a type of learning that occurs at a particular age or a life stage that is rapid and independent of the species involved.

Key Terms

imprinting

any kind of phase-sensitive learning (learning occurring at a particular age or a particular life stage) that is rapid and apparently independent of the consequences of behavior

habituation

a learned behavior involving modifying behavior according to the environment or previous expriences

innate

inborn; native; natural

Simple Learned Behaviors

The majority of the behaviors discussed in previous sections are innate or at least have an innate component. In other words, variations on the innate behaviors may be learned. Innate behaviors are inherited and do not change in response to signals from the environment. Conversely, learned behaviors, even though they may have instinctive components, allow an organism to adapt to changes in the environment and are modified by previous experiences. Simple learned behaviors include habituation and imprinting, both of which are important to the maturation process of young animals.

Habituation

Habituation is a simple form of learning in which an animal stops responding to a stimulus after a period of repeated exposure. This is a form of non-associative learning as the stimulus is not associated with any punishment or reward. Prairie dogs typically sound an alarm call when threatened by a predator, but they become habituated to the sound of human footsteps when no harm is associated with this sound; therefore, they no longer respond to them with an alarm call. In this example, habituation is specific to the sound of human footsteps, as the animals still respond to the sounds of potential predators.

Imprinting

Imprinting is a type of learning that occurs at a particular age or a life stage that is rapid and independent of the species involved. Hatchling ducks recognize the first adult they see, their mother, and make a bond with her. A familiar sight is ducklings walking or swimming after their mothers . This type of non-associative learning is very important in the maturation process of these animals as it encourages them to stay near their mother in order to be be protected, greatly increasing their chances of survival. However, if newborn ducks see a human before they see their mother, they will imprint on the human and follow it in just the same manner as they would follow their real mother.

Imprinting

Imprinting

The attachment of ducklings to their mother is an example of imprinting.

45.7.2: Conditioned Behavior

In classical conditioning, a behavior is paired with an unrelated stimulus; in operant conditioning, behaviors are modified by consequences.

Learning Objective

Distinguish between classical and operant conditioning techniques

Key Points

  • In classical conditioning, a response called the conditioned response is associated with a stimulus that it had previously not been associated with, the conditioned stimulus; the response to the original, unconditioned stimulus is called the unconditioned response.
  • Classical conditioning is a major tenet of behaviorism, a branch of psychological philosophy that proposes that all actions, thoughts, and emotions of living things are behaviors that can be treated by behavior modification and changes in the environment.
  • In operant conditioning, the conditioned behavior is gradually modified by its consequences as the animal responds to the stimulus.
  • Operant conditioning relies on the use of reinforcement (i.e. a reward) and/or punishment to modify a conditioned behavior; in this way, the animal is conditioned to associate a type of behavior with the punishment or reward.

Key Terms

classical conditioning

the use of a neutral stimulus, originally paired with one that invokes a response, to generate a conditioned response

operant conditioning

a technique of behavior modification through positive and negative reinforcement and positive and negative punishment

Conditioned Behavior

Conditioned behaviors are types of associative learning where a stimulus becomes associated with a consequence. Two types of conditioning techniques include classical and operant conditioning.

Classical Conditioning

In classical conditioning, a response called the conditioned response is associated with a stimulus that it had previously not been associated with, the conditioned stimulus. The response to the original, unconditioned stimulus is called the unconditioned response. The most cited example of classical conditioning is Ivan Pavlov's experiments with dogs . In Pavlov's experiments, the unconditioned response was the salivation of dogs in response to the unconditioned stimulus of seeing or smelling their food. The conditioning stimulus that researchers associated with the unconditioned response was the ringing of a bell. During conditioning, every time the animal was given food, the bell was rung. This was repeated during several trials. After some time, the dog learned to associate the ringing of the bell with food and to respond by salivating. After the conditioning period was finished, the dog would respond by salivating when the bell was rung, even when the unconditioned stimulus (the food) was absent. Thus, the ringing of the bell became the conditioned stimulus and the salivation became the conditioned response. Although it is thought by some scientists that the unconditioned and conditioned responses are identical, Pavlov discovered that the saliva in the conditioned dogs had characteristic differences when compared to the unconditioned dog.

Classical conditioning

Classical conditioning

In the classic Pavlovian response, the dog becomes conditioned to associate the ringing of the bell with food.

Some believe that this type of conditioning requires multiple exposures to the paired stimulus and response, but it is now known that this is not necessary in all cases; some conditioning can be learned in a single pairing experiment. Classical conditioning is a major tenet of behaviorism, a branch of psychological philosophy that proposes that all actions, thoughts, and emotions of living things are behaviors that can be treated by behavior modification and changes in the environment.

Operant Conditioning

In operant conditioning, the conditioned behavior is gradually modified by its consequences as the animal responds to the stimulus. A major proponent of such conditioning was psychologist B.F. Skinner, the inventor of the Skinner box. Skinner put rats in his boxes that contained a lever that would dispense food to the rat when depressed. While initially the rat would push the lever a few times by accident, it eventually associated pushing the lever with getting the food. This type of learning is an example of operant conditioning. Operant learning is the basis of most animal training: the conditioned behavior is continually modified by positive or negative reinforcement (such as being given a reward or having a negative stimulus removed) or by positive or negative punishment (such as being given a punishment or having a pleasing stimulus removed). In this way, the animal is conditioned to associate a type of behavior with the punishment or reward. Over time, the animal can be induced to perform behaviors that they would not have done in the wild, such as the "tricks" dolphins perform at marine amusement park shows .

Operant conditioning

Operant conditioning

The training of dolphins by rewarding them with food is an example of positive reinforcement operant conditioning.

45.7.3: Cognitive Learning and Sociobiology

Cognitive learning relies on cognitive processes such as reasoning and abstract thinking; it is much more efficient than conditioning.

Learning Objective

Describe research models that indicate the presence of cognitive learning in animals

Key Points

  • Cognitive learning involves the manipulation of information using the mind; it is a great deal more powerful than either operant or classical conditioning.
  • The development of complex language by humans has made cognitive learning the most prominent method of human learning.
  • Cognitive learning is not limited to primates; rats have demonstrated the ability to build cognitive maps, as well, which are mental representations used to acquire, code, store, recall, and decode information about the environment.
  • Sociobiology argues that all animal and human behavior, including aggressiveness and other social interactions, can be explained almost solely in terms of genetics and natural selection.
  • Sociobiology is controversial: some have criticized the approach for ignoring the environmental effects on behavior and for being similar to "biological determinism," or the belief that all behaviors are hardwired into our genes.

Key Terms

cognitive map

a mental epresentation which serves an organism to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday environment

cognitive learning

the process by which one acquires knowledge or skill in cognitive processes, which include reasoning, abstract thinking, and problem solving

sociobiology

the science that applies the principles of evolutionary biology to the study of social behaviour in both humans and animals

Cognitive Learning

Classical and operant conditioning are inefficient ways for humans and other intelligent animals to learn. Some primates, including humans, are able to learn by imitating the behavior of others and by taking instructions. The development of complex language by humans has made cognitive learning, or the manipulation of information using the mind, the most prominent method of human learning. In fact, that is how you are learning right now by reading this information. As students read, they can make mental images of objects or organisms, imagining changes to them or behaviors by them as they anticipate the consequences. In addition to visual processing, cognitive learning is also enhanced by remembering past experiences, touching physical objects, hearing sounds, tasting food, and a variety of other sensory-based inputs. Cognitive learning is so powerful that it can be used to understand conditioning (discussed in the previous concept) in detail. In the reverse scenario, conditioning cannot help someone learn about cognition.

Classic work on cognitive learning was done by Wolfgang Köhler with chimpanzees. He demonstrated that these animals were capable of abstract thought by showing that they could learn how to solve a puzzle. When a banana was hung in their cage too high for them to reach along with several boxes placed randomly on the floor, some of the chimps were able to stack the boxes one on top of the other, climb on top of them, and get the banana. This implies that they could visualize the result of stacking the boxes even before they had performed the action. This type of learning is much more powerful and versatile than conditioning.

Cognitive learning is not limited to primates, although they are the most efficient in using it. Maze-running experiments done with rats in the 1920s were the first to show cognitive skills in a simple mammal. The motivation for the animals to work their way through the maze was the presence of a piece of food at its end. In these studies, the animals in Group I were run in one trial per day and had food available to them each day on completion of the run . Group II rats were not fed in the maze for the first six days and then subsequent runs were done with food for several days after. Group III rats had food available on the third day and every day thereafter. The results were that the control rats, Group I, learned quickly, figuring out how to run the maze in seven days. Group III did not learn much during the three days without food, but rapidly caught up to the control group when given the food reward. Group II learned very slowly for the six days with no reward to motivate them. They did not begin to catch up to the control group until the day food was given; it then took two days longer to learn the maze.

Cognitive learning

Cognitive learning

Group I (the green solid line) found food at the end of each trial; group II (the blue dashed line) did not find food for the first 6 days; and group III (the red dotted line) did not find food during runs on the first three days. Notice that rats given food earlier learned faster and eventually caught up to the control group. The orange dots on the group II and III lines show the days when food rewards were added to the mazes.

It may not be immediately obvious that this type of learning is different from conditioning. Although one might be tempted to believe that the rats simply learned how to find their way through a conditioned series of right and left turns, E.C. Tolman proved a decade later that the rats were making a representation of the maze in their minds, which he called a "cognitive map." This was an early demonstration of the power of cognitive learning and how these abilities were not limited just to humans.

Sociobiology

Sociobiology is an interdisciplinary science originally popularized by social insect researcher E.O. Wilson in the 1970s. Wilson defined the science as "the extension of population biology and evolutionary theory to social organization." The main thrust of sociobiology is that animal and human behavior, including aggressiveness and other social interactions, can be explained almost solely in terms of genetics and natural selection. This science is controversial; some have criticized the approach for ignoring the environmental effects on behavior. This is another example of the "nature versus nurture" debate of the role of genetics versus the role of environment in determining an organism's characteristics.

Sociobiology also links genes with behaviors and has been associated with "biological determinism," the belief that all behaviors are hardwired into our genes. No one disputes that certain behaviors can be inherited and that natural selection plays a role retaining them. It is the application of such principles to human behavior that sparks this controversy, which remains active today.

Attributions

  • Simple Learned Behaviors
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44879/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "habituation." http://en.wiktionary.org/wiki/habituation. Wiktionary CC BY-SA 3.0.
    • "innate." http://en.wiktionary.org/wiki/innate. Wiktionary CC BY-SA 3.0.
    • "imprinting." http://en.wiktionary.org/wiki/imprinting. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Behavioral Biology: Proximate and Ultimate Causes of Behavior. October 17, 2013." http://cnx.org/content/m44879/latest/Figure_45_07_06.jpg. OpenStax CNX CC BY 3.0.
  • Conditioned Behavior
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "operant conditioning." http://en.wiktionary.org/wiki/operant_conditioning. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44879/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "classical conditioning." http://en.wiktionary.org/wiki/classical_conditioning. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Behavioral Biology: Proximate and Ultimate Causes of Behavior. October 17, 2013." http://cnx.org/content/m44879/latest/Figure_45_07_07.jpg. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Behavioral Biology: Proximate and Ultimate Causes of Behavior. October 17, 2013." http://cnx.org/content/m44879/latest/Figure_45_07_08.jpg. OpenStax CNX CC BY 3.0.
  • Cognitive Learning and Sociobiology
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44879/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "cognitive map." http://en.wikipedia.org/wiki/cognitive%20map. Wikipedia CC BY-SA 3.0.
    • "sociobiology." http://en.wiktionary.org/wiki/sociobiology. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 23, 2013." http://cnx.org/content/m44879/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Behavioral Biology: Proximate and Ultimate Causes of Behavior. October 17, 2013." http://cnx.org/content/m44879/latest/Figure_45_07_09.jpg. OpenStax CNX CC BY 3.0.

Annotate

Next Chapter
46: Ecosystems
PreviousNext
Biology
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org