Skip to main content

Boundless Biology: 44.3: Terrestrial Biomes

Boundless Biology
44.3: Terrestrial Biomes
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. 1: The Study of Life
    1. 1.1: The Science of Biology
      1. 1.1.0: Introduction to the Study of Biology
      2. 1.1.1: Scientific Reasoning
      3. 1.1.2: The Scientific Method
      4. 1.1.3: Basic and Applied Science
      5. 1.1.4: Publishing Scientific Work
      6. 1.1.5: Branches and Subdisciplines of Biology
    2. 1.2: Themes and Concepts of Biology
      1. 1.2.0: Properties of Life
      2. 1.2.1: Levels of Organization of Living Things
      3. 1.2.2: The Diversity of Life
  2. 2: The Chemical Foundation of Life
    1. 2.1: Atoms, Isotopes, Ions, and Molecules
      1. 2.1.0: Overview of Atomic Structure
      2. 2.1.1: Atomic Number and Mass Number
      3. 2.1.2: Isotopes
      4. 2.1.3: The Periodic Table
      5. 2.1.4: Electron Shells and the Bohr Model
      6. 2.1.5: Electron Orbitals
      7. 2.1.6: Chemical Reactions and Molecules
      8. 2.1.7: Ions and Ionic Bonds
      9. 2.1.8: Covalent Bonds and Other Bonds and Interactions
      10. 2.1.9: Hydrogen Bonding and Van der Waals Forces
    2. 2.2: Water
      1. 2.2.0: Water’s Polarity
      2. 2.2.1: Water’s States: Gas, Liquid, and Solid
      3. 2.2.2: Water’s High Heat Capacity
      4. 2.2.3: Water’s Heat of Vaporization
      5. 2.2.4: Water’s Solvent Properties
      6. 2.2.5: Water’s Cohesive and Adhesive Properties
      7. 2.2.6: pH, Buffers, Acids, and Bases
    3. 2.3: Carbon
      1. 2.3.0: The Chemical Basis for Life
      2. 2.3.1: Hydrocarbons
      3. 2.3.2: Organic Isomers
      4. 2.3.3: Organic Enantiomers
      5. 2.3.4: Organic Molecules and Functional Groups
  3. 3: Biological Macromolecules
    1. 3.1: Synthesis of Biological Macromolecules
      1. 3.1.0: Types of Biological Macromolecules
      2. 3.1.1: Dehydration Synthesis
      3. 3.1.2: Hydrolysis
    2. 3.2: Carbohydrates
      1. 3.2.0: Carbohydrate Molecules
      2. 3.2.1: Importance of Carbohydrates
    3. 3.3: Lipids
      1. 3.3.0: Lipid Molecules
      2. 3.3.1: Waxes
      3. 3.3.2: Phospholipids
      4. 3.3.3: Steroids
    4. 3.4: Proteins
      1. 3.4.0: Types and Functions of Proteins
      2. 3.4.1: Amino Acids
      3. 3.4.2: Protein Structure
      4. 3.4.3: Denaturation and Protein Folding
    5. 3.5: Nucleic Acids
      1. 3.5.0: DNA and RNA
      2. 3.5.1: The DNA Double Helix
      3. 3.5.2: DNA Packaging
      4. 3.5.3: Types of RNA
  4. 4: Cell Structure
    1. 4.1: Studying Cells
      1. 4.1.0: Cells as the Basic Unit of Life
      2. 4.1.1: Microscopy
      3. 4.1.2: Cell Theory
      4. 4.1.3: Cell Size
    2. 4.2: Prokaryotic Cells
      1. 4.2.0: Characteristics of Prokaryotic Cells
    3. 4.3: Eukaryotic Cells
      1. 4.3.0: Characteristics of Eukaryotic Cells
      2. 4.3.1: The Plasma Membrane and the Cytoplasm
      3. 4.3.2: The Nucleus and Ribosomes
      4. 4.3.3: Mitochondria
      5. 4.3.4: Comparing Plant and Animal Cells
    4. 4.4: The Endomembrane System and Proteins
      1. 4.4.0: Vesicles and Vacuoles
      2. 4.4.1: The Endoplasmic Reticulum
      3. 4.4.2: The Golgi Apparatus
      4. 4.4.3: Lysosomes
      5. 4.4.4: Peroxisomes
    5. 4.5: The Cytoskeleton
      1. 4.5.0: Microfilaments
      2. 4.5.1: Intermediate Filaments and Microtubules
    6. 4.6: Connections between Cells and Cellular Activities
      1. 4.6.0: Extracellular Matrix of Animal Cells
      2. 4.6.1: Intercellular Junctions
  5. 5: Structure and Function of Plasma Membranes
    1. 5.1: Components and Structure
      1. 5.1.0: Components of Plasma Membranes
      2. 5.1.1: Fluid Mosaic Model
      3. 5.1.2: Membrane Fluidity
    2. 5.2: Passive Transport
      1. 5.2.0: The Role of Passive Transport
      2. 5.2.1: Selective Permeability
      3. 5.2.2: Diffusion
      4. 5.2.3: Facilitated transport
      5. 5.2.4: Osmosis
      6. 5.2.5: Tonicity
      7. 5.2.6: Osmoregulation
    3. 5.3: Active Transport
      1. 5.3.0: Electrochemical Gradient
      2. 5.3.1: Primary Active Transport
      3. 5.3.2: Secondary Active Transport
    4. 5.4: Bulk Transport
      1. 5.4.0: Endocytosis
      2. 5.4.1: Exocytosis
  6. 6: Metabolism
    1. 6.1: Energy and Metabolism
      1. 6.1.0: The Role of Energy and Metabolism
      2. 6.1.1: Types of Energy
      3. 6.1.2: Metabolic Pathways
      4. 6.1.3: Metabolism of Carbohydrates
    2. 6.2: Potential, Kinetic, Free, and Activation Energy
      1. 6.2.0: Free Energy
      2. 6.2.1: The First Law of Thermodynamics
      3. 6.2.2: The Second Law of Thermodynamics
      4. 6.2.3: Activation Energy
    3. 6.3: ATP: Adenosine Triphosphate
      1. 6.3.0: ATP: Adenosine Triphosphate
    4. 6.4: Enzymes
      1. 6.4.0: Enzyme Active Site and Substrate Specificity
      2. 6.4.1: Control of Metabolism Through Enzyme Regulation
  7. 7: Cellular Respiration
    1. 7.1: Energy in Living Systems
      1. 7.1.0: Transforming Chemical Energy
      2. 7.1.1: Electrons and Energy
      3. 7.1.2: ATP in Metabolism
    2. 7.2: Glycolysis
      1. 7.2.0: Importance of Glycolysis
      2. 7.2.1: The Energy-Requiring Steps of Glycolysis
      3. 7.2.2: The Energy-Releasing Steps of Glycolysis
      4. 7.2.3: Outcomes of Glycolysis
    3. 7.3: Oxidation of Pyruvate and the Citric Acid Cycle
      1. 7.3.0: Breakdown of Pyruvate
      2. 7.3.1: Acetyl CoA to CO2
      3. 7.3.2: Citric Acid Cycle
    4. 7.4: Oxidative Phosphorylation
      1. 7.4.0: Electron Transport Chain
      2. 7.4.1: Chemiosmosis and Oxidative Phosphorylation
      3. 7.4.2: ATP Yield
    5. 7.5: Metabolism without Oxygen
      1. 7.5.0: Anaerobic Cellular Respiration
    6. 7.6: Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      1. 7.6.0: Connecting Other Sugars to Glucose Metabolism
      2. 7.6.1: Connecting Proteins to Glucose Metabolism
      3. 7.6.2: Connecting Lipids to Glucose Metabolism
    7. 7.7: Regulation of Cellular Respiration
      1. 7.7.0: Regulatory Mechanisms for Cellular Respiration
      2. 7.7.1: Control of Catabolic Pathways
  8. 8: Photosynthesis
    1. 8.1: Overview of Photosynthesis
      1. 8.1.0: The Purpose and Process of Photosynthesis
      2. 8.1.1: Main Structures and Summary of Photosynthesis
      3. 8.1.2: The Two Parts of Photosynthesis
    2. 8.2: The Light-Dependent Reactions of Photosynthesis
      1. 8.2.0: Introduction to Light Energy
      2. 8.2.1: Absorption of Light
      3. 8.2.2: Processes of the Light-Dependent Reactions
    3. 8.3: The Light-Independent Reactions of Photosynthesis
      1. 8.3.0: CAM and C4 Photosynthesis
      2. 8.3.1: The Calvin Cycle
      3. 8.3.2: The Carbon Cycle
  9. 9: Cell Communication
    1. 9.1: Signaling Molecules and Cellular Receptors
      1. 9.1.0: Signaling Molecules and Cellular Receptors
      2. 9.1.1: Forms of Signaling
      3. 9.1.2: Types of Receptors
      4. 9.1.3: Signaling Molecules
    2. 9.2: Propagation of the Cellular Signal
      1. 9.2.0: Binding Initiates a Signaling Pathway
      2. 9.2.1: Methods of Intracellular Signaling
    3. 9.3: Response to the Cellular Signal
      1. 9.3.0: Termination of the Signal Cascade
      2. 9.3.1: Cell Signaling and Gene Expression
      3. 9.3.2: Cell Signaling and Cellular Metabolism
      4. 9.3.3: Cell Signaling and Cell Growth
      5. 9.3.4: Cell Signaling and Cell Death
    4. 9.4: Signaling in Single-Celled Organisms
      1. 9.4.0: Signaling in Yeast
      2. 9.4.1: Signaling in Bacteria
  10. 10: Cell Reproduction
    1. 10.1: Cell Division
      1. 10.1.0: The Role of the Cell Cycle
      2. 10.1.1: Genomic DNA and Chromosomes
      3. 10.1.2: Eukaryotic Chromosomal Structure and Compaction
    2. 10.2: The Cell Cycle
      1. 10.2.0: Interphase
      2. 10.2.1: The Mitotic Phase and the G0 Phase
    3. 10.3: Control of the Cell Cycle
      1. 10.3.0: Regulation of the Cell Cycle by External Events
      2. 10.3.1: Regulation of the Cell Cycle at Internal Checkpoints
      3. 10.3.2: Regulator Molecules of the Cell Cycle
    4. 10.4: Cancer and the Cell Cycle
      1. 10.4.0: Proto-oncogenes
      2. 10.4.1: Tumor Suppressor Genes
    5. 10.5: Prokaryotic Cell Division
      1. 10.5.0: Binary Fission
  11. 11: Meiosis and Sexual Reproduction
    1. 11.1: The Process of Meiosis
      1. 11.1.0: Introduction to Meiosis
      2. 11.1.1: Meiosis I
      3. 11.1.2: Meiosis II
      4. 11.1.3: Comparing Meiosis and Mitosis
    2. 11.2: Sexual Reproduction
      1. 11.2.0: Advantages and Disadvantages of Sexual Reproduction
      2. 11.2.1: Life Cycles of Sexually Reproducing Organisms
  12. 12: Mendel's Experiments and Heredity
    1. 12.1: Mendel’s Experiments and the Laws of Probability
      1. 12.1.0: Introduction to Mendelian Inheritance
      2. 12.1.1: Mendel’s Model System
      3. 12.1.2: Mendelian Crosses
      4. 12.1.3: Garden Pea Characteristics Revealed the Basics of Heredity
      5. 12.1.4: Rules of Probability for Mendelian Inheritance
    2. 12.2: Patterns of Inheritance
      1. 12.2.0: Genes as the Unit of Heredity
      2. 12.2.1: Phenotypes and Genotypes
      3. 12.2.2: The Punnett Square Approach for a Monohybrid Cross
      4. 12.2.3: Alternatives to Dominance and Recessiveness
      5. 12.2.4: Sex-Linked Traits
      6. 12.2.5: Lethal Inheritance Patterns
    3. 12.3: Laws of Inheritance
      1. 12.3.0: Mendel's Laws of Heredity
      2. 12.3.1: Mendel's Law of Dominance
      3. 12.3.2: Mendel's Law of Segregation
      4. 12.3.3: Mendel's Law of Independent Assortment
      5. 12.3.4: Genetic Linkage and Violation of the Law of Independent Assortment
      6. 12.3.5: Epistasis
  13. 13: Modern Understandings of Inheritance
    1. 13.1: Chromosomal Theory and Genetic Linkage
      1. 13.1.0: Chromosomal Theory of Inheritance
      2. 13.1.1: Genetic Linkage and Distances
      3. 13.1.2: Identification of Chromosomes and Karyotypes
    2. 13.2: Chromosomal Basis of Inherited Disorders
      1. 13.2.0: Disorders in Chromosome Number
      2. 13.2.1: Chromosomal Structural Rearrangements
      3. 13.2.2: X-Inactivation
  14. 14: DNA Structure and Function
    1. 14.1: Historical Basis of Modern Understanding
      1. 14.1.0: Discovery of DNA
      2. 14.1.1: Modern Applications of DNA
    2. 14.2: DNA Structure and Sequencing
      1. 14.2.0: The Structure and Sequence of DNA
      2. 14.2.1: DNA Sequencing Techniques
    3. 14.3: DNA Replication
      1. 14.3.0: Basics of DNA Replication
      2. 14.3.1: DNA Replication in Prokaryotes
      3. 14.3.2: DNA Replication in Eukaryotes
      4. 14.3.3: Telomere Replication
    4. 14.4: DNA Repair
      1. 14.4.0: DNA Repair
  15. 15: Genes and Proteins
    1. 15.1: The Genetic Code
      1. 15.1.0: The Relationship Between Genes and Proteins
      2. 15.1.1: The Central Dogma: DNA Encodes RNA and RNA Encodes Protein
    2. 15.2: Prokaryotic Transcription
      1. 15.2.0: Transcription in Prokaryotes
      2. 15.2.1: Initiation of Transcription in Prokaryotes
      3. 15.2.2: Elongation and Termination in Prokaryotes
    3. 15.3: Eukaryotic Transcription
      1. 15.3.0: Initiation of Transcription in Eukaryotes
      2. 15.3.1: Elongation and Termination in Eukaryotes
    4. 15.4: RNA Processing in Eukaryotes
      1. 15.4.0: mRNA Processing
      2. 15.4.1: Processing of tRNAs and rRNAs
    5. 15.5: Ribosomes and Protein Synthesis
      1. 15.5.0: The Protein Synthesis Machinery
      2. 15.5.1: The Mechanism of Protein Synthesis
      3. 15.5.2: Protein Folding, Modification, and Targeting
  16. 16: Gene Expression
    1. 16.1: Regulation of Gene Expression
      1. 16.1.0: The Process and Purpose of Gene Expression Regulation
      2. 16.1.1: Prokaryotic versus Eukaryotic Gene Expression
    2. 16.2: Prokaryotic Gene Regulation
      1. 16.2.0: The trp Operon: A Repressor Operon
      2. 16.2.1: Catabolite Activator Protein (CAP): An Activator Regulator
      3. 16.2.2: The lac Operon: An Inducer Operon
    3. 16.3: Eukaryotic Gene Regulation
      1. 16.3.0: The Promoter and the Transcription Machinery
      2. 16.3.1: Transcriptional Enhancers and Repressors
      3. 16.3.2: Epigenetic Control: Regulating Access to Genes within the Chromosome
      4. 16.3.3: RNA Splicing
      5. 16.3.4: The Initiation Complex and Translation Rate
      6. 16.3.5: Regulating Protein Activity and Longevity
    4. 16.4: Regulating Gene Expression in Cell Development
      1. 16.4.0: Gene Expression in Stem Cells
      2. 16.4.1: Cellular Differentiation
      3. 16.4.2: Mechanics of Cellular Differentation
      4. 16.4.3: Establishing Body Axes during Development
      5. 16.4.4: Gene Expression for Spatial Positioning
      6. 16.4.5: Cell Migration in Multicellular Organisms
      7. 16.4.6: Programmed Cell Death
    5. 16.5: Cancer and Gene Regulation
      1. 16.5.0: Altered Gene Expression in Cancer
      2. 16.5.1: Epigenetic Alterations in Cancer
      3. 16.5.2: Cancer and Transcriptional Control
      4. 16.5.3: Cancer and Post-Transcriptional Control
      5. 16.5.4: Cancer and Translational Control
  17. 17: Biotechnology and Genomics
    1. 17.1: Biotechnology
      1. 17.1.0: Biotechnology
      2. 17.1.1: Basic Techniques to Manipulate Genetic Material (DNA and RNA)
      3. 17.1.2: Molecular and Cellular Cloning
      4. 17.1.3: Reproductive Cloning
      5. 17.1.4: Genetic Engineering
      6. 17.1.5: Genetically Modified Organisms (GMOs)
      7. 17.1.6: Biotechnology in Medicine
      8. 17.1.7: Production of Vaccines, Antibiotics, and Hormones
    2. 17.2: Mapping Genomes
      1. 17.2.0: Genetic Maps
      2. 17.2.1: Physical Maps and Integration with Genetic Maps
    3. 17.3: Whole-Genome Sequencing
      1. 17.3.0: Strategies Used in Sequencing Projects
      2. 17.3.1: Use of Whole-Genome Sequences of Model Organisms
      3. 17.3.2: Uses of Genome Sequences
    4. 17.4: Applying Genomics
      1. 17.4.0: Predicting Disease Risk at the Individual Level
      2. 17.4.1: Pharmacogenomics, Toxicogenomics, and Metagenomics
      3. 17.4.2: Genomics and Biofuels
    5. 17.5: Genomics and Proteomics
      1. 17.5.0: Genomics and Proteomics
      2. 17.5.1: Basic Techniques in Protein Analysis
      3. 17.5.2: Cancer Proteomics
  18. 18: Evolution and the Origin of Species
    1. 18.1: Understanding Evolution
      1. 18.1.0: What is Evolution?
      2. 18.1.1: Charles Darwin and Natural Selection
      3. 18.1.2: The Galapagos Finches and Natural Selection
      4. 18.1.3: Processes and Patterns of Evolution
      5. 18.1.4: Evidence of Evolution
      6. 18.1.5: Misconceptions of Evolution
    2. 18.2: Formation of New Species
      1. 18.2.0: The Biological Species Concept
      2. 18.2.1: Reproductive Isolation
      3. 18.2.2: Speciation
      4. 18.2.3: Allopatric Speciation
      5. 18.2.4: Sympatric Speciation
    3. 18.3: Hybrid Zones and Rates of Speciation
      1. 18.3.0: Hybrid Zones
      2. 18.3.1: Varying Rates of Speciation
    4. 18.4: Evolution of Genomes
      1. 18.4.0: Genomic Similiarities between Distant Species
      2. 18.4.1: Genome Evolution
      3. 18.4.2: Whole-Genome Duplication
      4. 18.4.3: Gene Duplications and Divergence
      5. 18.4.4: Noncoding DNA
      6. 18.4.5: Variations in Size and Number of Genes
    5. 18.5: Evidence of Evolution
      1. 18.5.0: The Fossil Record as Evidence for Evolution
      2. 18.5.1: Fossil Formation
      3. 18.5.2: Gaps in the Fossil Record
      4. 18.5.3: Carbon Dating and Estimating Fossil Age
      5. 18.5.4: The Fossil Record and the Evolution of the Modern Horse
      6. 18.5.5: Homologous Structures
      7. 18.5.6: Convergent Evolution
      8. 18.5.7: Vestigial Structures
      9. 18.5.8: Biogeography and the Distribution of Species
  19. 19: The Evolution of Populations
    1. 19.1: Population Evolution
      1. 19.1.0: Defining Population Evolution
      2. 19.1.1: Population Genetics
      3. 19.1.2: Hardy-Weinberg Principle of Equilibrium
    2. 19.2: Population Genetics
      1. 19.2.0: Genetic Variation
      2. 19.2.1: Genetic Drift
      3. 19.2.2: Gene Flow and Mutation
      4. 19.2.3: Nonrandom Mating and Environmental Variance
    3. 19.3: Adaptive Evolution
      1. 19.3.0: Natural Selection and Adaptive Evolution
      2. 19.3.1: Stabilizing, Directional, and Diversifying Selection
      3. 19.3.2: Frequency-Dependent Selection
      4. 19.3.3: Sexual Selection
      5. 19.3.4: No Perfect Organism
  20. 20: Phylogenies and the History of Life
    1. 20.1: Organizing Life on Earth
      1. 20.1.0: Phylogenetic Trees
      2. 20.1.1: Limitations of Phylogenetic Trees
      3. 20.1.2: The Levels of Classification
    2. 20.2: Determining Evolutionary Relationships
      1. 20.2.0: Distinguishing between Similar Traits
      2. 20.2.1: Building Phylogenetic Trees
    3. 20.3: Perspectives on the Phylogenetic Tree
      1. 20.3.0: Limitations to the Classic Model of Phylogenetic Trees
      2. 20.3.1: Horizontal Gene Transfer
      3. 20.3.2: Endosymbiotic Theory and the Evolution of Eukaryotes
      4. 20.3.3: Web, Network, and Ring of Life Models
  21. 21: Viruses
    1. 21.1: Viral Evolution, Morphology, and Classification
      1. 21.1.0: Discovery and Detection of Viruses
      2. 21.1.1: Evolution of Viruses
      3. 21.1.2: Viral Morphology
      4. 21.1.3: Virus Classification
    2. 21.2: Virus Infections and Hosts
      1. 21.2.0: Steps of Virus Infections
      2. 21.2.1: The Lytic and Lysogenic Cycles of Bacteriophages
      3. 21.2.2: Animal Viruses
      4. 21.2.3: Plant Viruses
    3. 21.3: Prevention and Treatment of Viral Infections
      1. 21.3.0: Vaccines and Immunity
      2. 21.3.1: Vaccines and Anti-Viral Drugs for Treatment
    4. 21.4: Prions and Viroids
      1. 21.4.0: Prions and Viroids
  22. 22: Prokaryotes: Bacteria and Archaea
    1. 22.1: Prokaryotic Diversity
      1. 22.1.0: Classification of Prokaryotes
      2. 22.1.1: The Origins of Archaea and Bacteria
      3. 22.1.2: Extremophiles and Biofilms
    2. 22.2: Structure of Prokaryotes
      1. 22.2.0: Basic Structures of Prokaryotic Cells
      2. 22.2.1: Prokaryotic Reproduction
    3. 22.3: Prokaryotic Metabolism
      1. 22.3.0: Energy and Nutrient Requirements for Prokaryotes
      2. 22.3.1: The Role of Prokaryotes in Ecosystems
    4. 22.4: Bacterial Diseases in Humans
      1. 22.4.0: History of Bacterial Diseases
      2. 22.4.1: Biofilms and Disease
      3. 22.4.2: Antibiotics: Are We Facing a Crisis?
      4. 22.4.3: Bacterial Foodborne Diseases
    5. 22.5: Beneficial Prokaryotes
      1. 22.5.0: Symbiosis between Bacteria and Eukaryotes
      2. 22.5.1: Early Biotechnology: Cheese, Bread, Wine, Beer, and Yogurt
      3. 22.5.2: Prokaryotes and Environmental Bioremediation
  23. 23: Protists
    1. 23.1: Eukaryotic Origins
      1. 23.1.0: Early Eukaryotes
      2. 23.1.1: Characteristics of Eukaryotic DNA
      3. 23.1.2: Endosymbiosis and the Evolution of Eukaryotes
      4. 23.1.3: The Evolution of Mitochondria
      5. 23.1.4: The Evolution of Plastids
    2. 23.2: Characteristics of Protists
      1. 23.2.0: Cell Structure, Metabolism, and Motility
      2. 23.2.1: Protist Life Cycles and Habitats
    3. 23.3: Groups of Protists
      1. 23.3.0: Excavata
      2. 23.3.1: Chromalveolata: Alveolates
      3. 23.3.2: Chromalveolata: Stramenopiles
      4. 23.3.3: Rhizaria
      5. 23.3.4: Archaeplastida
      6. 23.3.5: Amoebozoa and Opisthokonta
    4. 23.4: Ecology of Protists
      1. 23.4.0: Protists as Primary Producers, Food Sources, and Symbionts
      2. 23.4.1: Protists as Human Pathogens
      3. 23.4.2: Protists as Plant Pathogens
  24. 24: Fungi
    1. 24.1: Characteristics of Fungi
      1. 24.1.0: Characteristics of Fungi
      2. 24.1.1: Fungi Cell Structure and Function
      3. 24.1.2: Fungi Reproduction
    2. 24.2: Ecology of Fungi
      1. 24.2.0: Fungi Habitat, Decomposition, and Recycling
      2. 24.2.1: Mutualistic Relationships with Fungi and Fungivores
    3. 24.3: Classifications of Fungi
      1. 24.3.0: Chytridiomycota: The Chytrids
      2. 24.3.1: Zygomycota: The Conjugated Fungi
      3. 24.3.2: Ascomycota: The Sac Fungi
      4. 24.3.3: Basidiomycota: The Club Fungi
      5. 24.3.4: Deuteromycota: The Imperfect Fungi
      6. 24.3.5: Glomeromycota
    4. 24.4: Fungal Parasites and Pathogens
      1. 24.4.0: Fungi as Plant, Animal, and Human Pathogens
    5. 24.5: Importance of Fungi in Human Life
      1. 24.5.0: Importance of Fungi in Human Life
  25. 25: Seedless Plants
    1. 25.1: Early Plant Life
      1. 25.1.0: Early Plant Life
      2. 25.1.1: Evolution of Land Plants
      3. 25.1.2: Plant Adaptations to Life on Land
      4. 25.1.3: Sporophytes and Gametophytes in Seedless Plants
      5. 25.1.4: Structural Adaptations for Land in Seedless Plants
      6. 25.1.5: The Major Divisions of Land Plants
    2. 25.2: Green Algae: Precursors of Land Plants
      1. 25.2.0: Streptophytes and Reproduction of Green Algae
      2. 25.2.1: Charales
    3. 25.3: Bryophytes
      1. 25.3.0: Bryophytes
      2. 25.3.1: Liverworts and Hornworts
      3. 25.3.2: Mosses
    4. 25.4: Seedless Vascular Plants
      1. 25.4.0: Seedless Vascular Plants
      2. 25.4.1: Vascular Tissue: Xylem and Phloem
      3. 25.4.2: The Evolution of Roots in Seedless Plants
      4. 25.4.3: Ferns and Other Seedless Vascular Plants
      5. 25.4.4: The Importance of Seedless Vascular Plants
  26. 26: Seed Plants
    1. 26.1: Evolution of Seed Plants
      1. 26.1.0: The Evolution of Seed Plants and Adaptations for Land
      2. 26.1.1: Evolution of Gymnosperms
      3. 26.1.2: Evolution of Angiosperms
    2. 26.2: Gymnosperms
      1. 26.2.0: Characteristics of Gymnosperms
      2. 26.2.1: Life Cycle of a Conifer
      3. 26.2.2: Diversity of Gymnosperms
    3. 26.3: Angiosperms
      1. 26.3.0: Angiosperm Flowers
      2. 26.3.1: Angsiosperm Fruit
      3. 26.3.2: The Life Cycle of an Angiosperm
      4. 26.3.3: Diversity of Angiosperms
    4. 26.4: The Role of Seed Plants
      1. 26.4.0: Herbivory and Pollination
      2. 26.4.1: The Importance of Seed Plants in Human Life
      3. 26.4.2: Biodiversity of Plants
  27. 27: Introduction to Animal Diversity
    1. 27.1: Features of the Animal Kingdom
      1. 27.1.0: Characteristics of the Animal Kingdom
      2. 27.1.1: Complex Tissue Structure
      3. 27.1.2: Animal Reproduction and Development
    2. 27.2: Features Used to Classify Animals
      1. 27.2.0: Animal Characterization Based on Body Symmetry
      2. 27.2.1: Animal Characterization Based on Features of Embryological Development
    3. 27.3: Animal Phylogeny
      1. 27.3.0: Constructing an Animal Phylogenetic Tree
      2. 27.3.1: Molecular Analyses and Modern Phylogenetic Trees
    4. 27.4: The Evolutionary History of the Animal Kingdom
      1. 27.4.0: Pre-Cambrian Animal Life
      2. 27.4.1: The Cambrian Explosion of Animal Life
      3. 27.4.2: Post-Cambrian Evolution and Mass Extinctions
  28. 28: Invertebrates
    1. 28.1: Phylum Porifera
      1. 28.1.0: Phylum Porifera
      2. 28.1.1: Morphology of Sponges
      3. 28.1.2: Physiological Processes in Sponges
    2. 28.2: Phylum Cnidaria
      1. 28.2.0: Phylum Cnidaria
      2. 28.2.1: Class Anthozoa
      3. 28.2.2: Class Scyphozoa
      4. 28.2.3: Class Cubozoa and Class Hydrozoa
    3. 28.3: Superphylum Lophotrochozoa
      1. 28.3.0: Superphylum Lophotrochozoa
      2. 28.3.1: Phylum Platyhelminthes
      3. 28.3.2: Phylum Rotifera
      4. 28.3.3: Phylum Nemertea
      5. 28.3.4: Phylum Mollusca
      6. 28.3.5: Classification of Phylum Mollusca
      7. 28.3.6: Phylum Annelida
    4. 28.4: Superphylum Ecdysozoa
      1. 28.4.0: Superphylum Ecdysozoa
      2. 28.4.1: Phylum Nematoda
      3. 28.4.2: Phylum Arthropoda
      4. 28.4.3: Subphyla of Arthropoda
    5. 28.5: Superphylum Deuterostomia
      1. 28.5.0: Phylum Echinodermata
      2. 28.5.1: Classes of Echinoderms
      3. 28.5.2: Phylum Chordata
  29. 29: Vertebrates
    1. 29.1: Chordates
      1. 29.1.0: Characteristics of Chordata
      2. 29.1.1: Chordates and the Evolution of Vertebrates
      3. 29.1.2: The Evolution of Craniata and Vertebrata
      4. 29.1.3: Characteristics of Vertebrates
    2. 29.2: Fishes
      1. 29.2.0: Agnathans: Jawless Fishes
      2. 29.2.1: Gnathostomes: Jawed Fishes
    3. 29.3: Amphibians
      1. 29.3.0: Characteristics and Evolution of Amphibians
      2. 29.3.1: Modern Amphibians
    4. 29.4: Reptiles
      1. 29.4.0: Characteristics of Amniotes
      2. 29.4.1: Evolution of Amniotes
      3. 29.4.2: Characteristics of Reptiles
      4. 29.4.3: Evolution of Reptiles
      5. 29.4.4: Modern Reptiles
    5. 29.5: Birds
      1. 29.5.0: Characteristics of Birds
      2. 29.5.1: Evolution of Birds
    6. 29.6: Mammals
      1. 29.6.0: Characteristics of Mammals
      2. 29.6.1: Evolution of Mammals
      3. 29.6.2: Living Mammals
    7. 29.7: The Evolution of Primates
      1. 29.7.0: Characteristics and Evolution of Primates
      2. 29.7.1: Early Human Evolution
      3. 29.7.2: Early Hominins
      4. 29.7.3: Genus Homo
  30. 30: Plant Form and Physiology
    1. 30.1: The Plant Body
      1. 30.1.0: Plant Tissues and Organ Systems
    2. 30.2: Stems
      1. 30.2.0: Functions of Stems
      2. 30.2.1: Stem Anatomy
      3. 30.2.2: Primary and Secondary Growth in Stems
      4. 30.2.3: Stem Modifications
    3. 30.3: Roots
      1. 30.3.0: Types of Root Systems and Zones of Growth
      2. 30.3.1: Root Modifications
    4. 30.4: Leaves
      1. 30.4.0: Leaf Structure and Arrangment
      2. 30.4.1: Types of Leaf Forms
      3. 30.4.2: Leaf Structure, Function, and Adaptation
    5. 30.5: Plant Development
      1. 30.5.0: Meristems
      2. 30.5.1: Genetic Control of Flowers
    6. 30.6: Transport of Water and Solutes in Plants
      1. 30.6.0: Water and Solute Potential
      2. 30.6.1: Pressure, Gravity, and Matric Potential
      3. 30.6.2: Movement of Water and Minerals in the Xylem
      4. 30.6.3: Transportation of Photosynthates in the Phloem
    7. 30.7: Plant Sensory Systems and Responses
      1. 30.7.0: Plant Responses to Light
      2. 30.7.1: The Phytochrome System and Red Light Response
      3. 30.7.2: Blue Light Response
      4. 30.7.3: Plant Responses to Gravity
      5. 30.7.4: Auxins, Cytokinins, and Gibberellins
      6. 30.7.5: Abscisic Acid, Ethylene, and Nontraditional Hormones
      7. 30.7.6: Plant Responses to Wind and Touch
    8. 30.8: Plant Defense Mechanisms
      1. 30.8.0: Plant Defenses Against Herbivores
      2. 30.8.1: Plant Defenses Against Pathogens
  31. 31: Soil and Plant Nutrition
    1. 31.1: Nutritional Requirements of Plants
      1. 31.1.0: Plant Nutrition
      2. 31.1.1: The Chemical Composition of Plants
      3. 31.1.2: Essential Nutrients for Plants
    2. 31.2: The Soil
      1. 31.2.0: Soil Composition
      2. 31.2.1: Soil Formation
      3. 31.2.2: Physical Properties of Soil
    3. 31.3: Nutritional Adaptations of Plants
      1. 31.3.0: Nitrogen Fixation: Root and Bacteria Interactions
      2. 31.3.1: Mycorrhizae: The Symbiotic Relationship between Fungi and Roots
      3. 31.3.2: Nutrients from Other Sources
  32. 32: Plant Reproduction
    1. 32.1: Plant Reproductive Development and Structure
      1. 32.1.0: Plant Reproductive Development and Structure
      2. 32.1.1: Sexual Reproduction in Gymnosperms
      3. 32.1.2: Sexual Reproduction in Angiosperms
    2. 32.2: Pollination and Fertilization
      1. 32.2.0: Pollination and Fertilization
      2. 32.2.1: Pollination by Insects
      3. 32.2.2: Pollination by Bats, Birds, Wind, and Water
      4. 32.2.3: Double Fertilization in Plants
      5. 32.2.4: Development of the Seed
      6. 32.2.5: Development of Fruit and Fruit Types
      7. 32.2.6: Fruit and Seed Dispersal
    3. 32.3: Asexual Reproduction
      1. 32.3.0: Asexual Reproduction in Plants
      2. 32.3.1: Natural and Artificial Methods of Asexual Reproduction in Plants
      3. 32.3.2: Plant Life Spans
  33. 33: The Animal Body: Basic Form and Function
    1. 33.1: Animal Form and Function
      1. 33.1.0: Characteristics of the Animal Body
      2. 33.1.1: Body Plans
      3. 33.1.2: Limits on Animal Size and Shape
      4. 33.1.3: Limiting Effects of Diffusion on Size and Development
      5. 33.1.4: Animal Bioenergetics
      6. 33.1.5: Animal Body Planes and Cavities
    2. 33.2: Animal Primary Tissues
      1. 33.2.0: Epithelial Tissues
      2. 33.2.1: Connective Tissues: Loose, Fibrous, and Cartilage
      3. 33.2.2: Connective Tissues: Bone, Adipose, and Blood
      4. 33.2.3: Muscle Tissues and Nervous Tissues
    3. 33.3: Homeostasis
      1. 33.3.0: Homeostatic Process
      2. 33.3.1: Control of Homeostasis
      3. 33.3.2: Homeostasis: Thermoregulation
      4. 33.3.3: Heat Conservation and Dissipation
  34. 34: Animal Nutrition and the Digestive System
    1. 34.1: Digestive Systems
      1. 34.1.0: Digestive Systems
      2. 34.1.1: Herbivores, Omnivores, and Carnivores
      3. 34.1.2: Invertebrate Digestive Systems
      4. 34.1.3: Vertebrate Digestive Systems
      5. 34.1.4: Digestive System: Mouth and Stomach
      6. 34.1.5: Digestive System: Small and Large Intestines
    2. 34.2: Nutrition and Energy Production
      1. 34.2.0: Food Requirements and Essential Nutrients
      2. 34.2.1: Food Energy and ATP
    3. 34.3: Digestive System Processes
      1. 34.3.0: Ingestion
      2. 34.3.1: Digestion and Absorption
      3. 34.3.2: Elimination
    4. 34.4: Digestive System Regulation
      1. 34.4.0: Neural Responses to Food
      2. 34.4.1: Hormonal Responses to Food
  35. 35: The Nervous System
    1. 35.1: Neurons and Glial Cells
      1. 35.1.0: Neurons and Glial Cells
      2. 35.1.1: Neurons
      3. 35.1.2: Glia
    2. 35.2: How Neurons Communicate
      1. 35.2.0: Nerve Impulse Transmission within a Neuron: Resting Potential
      2. 35.2.1: Nerve Impulse Transmission within a Neuron: Action Potential
      3. 35.2.2: Synaptic Transmission
      4. 35.2.3: Signal Summation
      5. 35.2.4: Synaptic Plasticity
    3. 35.3: The Nervous System
      1. 35.3.0: The Nervous System
    4. 35.4: The Central Nervous System
      1. 35.4.0: Brain: Cerebral Cortex and Brain Lobes
      2. 35.4.1: Brain: Midbrain and Brain Stem
      3. 35.4.2: Spinal Cord
    5. 35.5: The Peripheral Nervous System
      1. 35.5.0: Autonomic Nervous System
      2. 35.5.1: Sensory-Somatic Nervous System
    6. 35.6: Nervous System Disorders
      1. 35.6.0: Neurodegenerative Disorders
      2. 35.6.1: Neurodevelopmental Disorders: Autism and ADHD
      3. 35.6.2: Neurodevelopmental Disorders: Mental Illnesses
      4. 35.6.3: Other Neurological Disorders
  36. 36: Sensory Systems
    1. 36.1: Sensory Processes
      1. 36.1.0: Reception
      2. 36.1.1: Transduction and Perception
    2. 36.2: Somatosensation
      1. 36.2.0: Somatosensory Receptors
      2. 36.2.1: Integration of Signals from Mechanoreceptors
      3. 36.2.2: Thermoreception
    3. 36.3: Taste and Smell
      1. 36.3.0: Tastes and Odors
      2. 36.3.1: Reception and Transduction
    4. 36.4: Hearing and Vestibular Sensation
      1. 36.4.0: Sound
      2. 36.4.1: Reception of Sound
      3. 36.4.2: Transduction of Sound
      4. 36.4.3: The Vestibular System
      5. 36.4.4: Balance and Determining Equilibrium
    5. 36.5: Vision
      1. 36.5.0: Light
      2. 36.5.1: Anatomy of the Eye
      3. 36.5.2: Transduction of Light
      4. 36.5.3: Visual Processing
  37. 37: The Endocrine System
    1. 37.1: Types of Hormones
      1. 37.1.0: Hormone Functions
      2. 37.1.1: Lipid-Derived, Amino Acid-Derived, and Peptide Hormones
    2. 37.2: How Hormones Work
      1. 37.2.0: How Hormones Work
      2. 37.2.1: Intracellular Hormone Receptors
      3. 37.2.2: Plasma Membrane Hormone Receptors
    3. 37.3: Regulation of Body Processes
      1. 37.3.0: Hormonal Regulation of the Excretory System
      2. 37.3.1: Hormonal Regulation of the Reproductive System
      3. 37.3.2: Hormonal Regulation of Metabolism
      4. 37.3.3: Hormonal Control of Blood Calcium Levels
      5. 37.3.4: Hormonal Regulation of Growth
      6. 37.3.5: Hormonal Regulation of Stress
    4. 37.4: Regulation of Hormone Production
      1. 37.4.0: Humoral, Hormonal, and Neural Stimuli
    5. 37.5: Endocrine Glands
      1. 37.5.0: Hypothalamic-Pituitary Axis
      2. 37.5.1: Thyroid Gland
      3. 37.5.2: Parathyroid Glands
      4. 37.5.3: Adrenal Glands
      5. 37.5.4: Pancreas
      6. 37.5.5: Pineal Gland and Gonads
      7. 37.5.6: Organs with Secondary Endocrine Functions
  38. 38: The Musculoskeletal System
    1. 38.1: Types of Skeletal Systems
      1. 38.1.0: Functions of the Musculoskeletal System
      2. 38.1.1: Types of Skeletal Systems
      3. 38.1.2: Human Axial Skeleton
      4. 38.1.3: Human Appendicular Skeleton
    2. 38.2: Bone
      1. 38.2.0: Bone
      2. 38.2.1: Cell Types in Bones
      3. 38.2.2: Bone Development
      4. 38.2.3: Growth of Bone
      5. 38.2.4: Bone Remodeling and Repair
    3. 38.3: Joints and Skeletal Movement
      1. 38.3.0: Classification of Joints on the Basis of Structure and Function
      2. 38.3.1: Movement at Synovial Joints
      3. 38.3.2: Types of Synovial Joints
      4. 38.3.3: Bone and Joint Disorders
    4. 38.4: Muscle Contraction and Locomotion
      1. 38.4.0: Structure and Function of the Muscular System
      2. 38.4.1: Skeletal Muscle Fibers
      3. 38.4.2: Sliding Filament Model of Contraction
      4. 38.4.3: ATP and Muscle Contraction
      5. 38.4.4: Regulatory Proteins
      6. 38.4.5: Excitation–Contraction Coupling
      7. 38.4.6: Control of Muscle Tension
  39. 39: The Respiratory System
    1. 39.1: Systems of Gas Exchange
      1. 39.1.0: The Respiratory System and Direct Diffusion
      2. 39.1.1: Skin, Gills, and Tracheal Systems
      3. 39.1.2: Amphibian and Bird Respiratory Systems
      4. 39.1.3: Mammalian Systems and Protective Mechanisms
    2. 39.2: Gas Exchange across Respiratory Surfaces
      1. 39.2.0: Gas Pressure and Respiration
      2. 39.2.1: Basic Principles of Gas Exchange
      3. 39.2.2: Lung Volumes and Capacities
      4. 39.2.3: Gas Exchange across the Alveoli
    3. 39.3: Breathing
      1. 39.3.0: The Mechanics of Human Breathing
      2. 39.3.1: Types of Breathing
      3. 39.3.2: The Work of Breathing
      4. 39.3.3: Dead Space: V/Q Mismatch
    4. 39.4: Transport of Gases in Human Bodily Fluids
      1. 39.4.0: Transport of Oxygen in the Blood
      2. 39.4.1: Transport of Carbon Dioxide in the Blood
  40. 40: The Circulatory System
    1. 40.1: Overview of the Circulatory System
      1. 40.1.0: The Role of the Circulatory System
      2. 40.1.1: Open and Closed Circulatory Systems
      3. 40.1.2: Types of Circulatory Systems in Animals
    2. 40.2: Components of the Blood
      1. 40.2.0: The Role of Blood in the Body
      2. 40.2.1: Red Blood Cells
      3. 40.2.2: White Blood Cells
      4. 40.2.3: Platelets and Coagulation Factors
      5. 40.2.4: Plasma and Serum
    3. 40.3: Mammalian Heart and Blood Vessels
      1. 40.3.0: Structures of the Heart
      2. 40.3.1: Arteries, Veins, and Capillaries
      3. 40.3.2: The Cardiac Cycle
    4. 40.4: Blood Flow and Blood Pressure Regulation
      1. 40.4.0: Blood Flow Through the Body
      2. 40.4.1: Blood Pressure
  41. 41: Osmotic Regulation and the Excretory System
    1. 41.1: Osmoregulation and Osmotic Balance
      1. 41.1.0: Introduction to Osmoregulation
      2. 41.1.1: Transport of Electrolytes across Cell Membranes
      3. 41.1.2: Concept of Osmolality and Milliequivalent
      4. 41.1.3: Osmoregulators and Osmoconformers
    2. 41.2: Nitrogenous Wastes
      1. 41.2.0: Nitrogenous Waste in Terrestrial Animals: The Urea Cycle
      2. 41.2.1: Nitrogenous Waste in Birds and Reptiles: Uric Acid
    3. 41.3: Excretion Systems
      1. 41.3.0: Contractile Vacuoles in Microorganisms
      2. 41.3.1: Flame Cells of Planaria and Nephridia of Worms
      3. 41.3.2: Malpighian Tubules of Insects
    4. 41.4: Human Osmoregulatory and Excretory Systems
      1. 41.4.0: Kidney Structure
      2. 41.4.1: Nephron: The Functional Unit of the Kidney
      3. 41.4.2: Kidney Function and Physiology
    5. 41.5: Hormonal Control of Osmoregulatory Functions
      1. 41.5.0: Epinephrine and Norepinephrine
      2. 41.5.1: Other Hormonal Controls for Osmoregulation
  42. 42: The Immune System
    1. 42.1: Innate Immune Response
      1. 42.1.0: Innate Immune Response
      2. 42.1.1: Physical and Chemical Barriers
      3. 42.1.2: Pathogen Recognition
      4. 42.1.3: Natural Killer Cells
      5. 42.1.4: The Complement System
    2. 42.2: Adaptive Immune Response
      1. 42.2.0: Antigen-presenting Cells: B and T cells
      2. 42.2.1: Humoral Immune Response
      3. 42.2.2: Cell-Mediated Immunity
      4. 42.2.3: Cytotoxic T Lymphocytes and Mucosal Surfaces
      5. 42.2.4: Immunological Memory
      6. 42.2.5: Regulating Immune Tolerance
    3. 42.3: Antibodies
      1. 42.3.0: Antibody Structure
      2. 42.3.1: Antibody Functions
    4. 42.4: Disruptions in the Immune System
      1. 42.4.0: Immunodeficiency
      2. 42.4.1: Hypersensitivities
  43. 43: Animal Reproduction and Development
    1. 43.1: Reproduction Methods
      1. 43.1.0: Methods of Reproducing
      2. 43.1.1: Types of Sexual and Asexual Reproduction
      3. 43.1.2: Sex Determination
    2. 43.2: Fertilization
      1. 43.2.0: External and Internal Fertilization
      2. 43.2.1: The Evolution of Reproduction
    3. 43.3: Human Reproductive Anatomy and Gametogenesis
      1. 43.3.0: Male Reproductive Anatomy
      2. 43.3.1: Female Reproductive Anatomy
      3. 43.3.2: Gametogenesis (Spermatogenesis and Oogenesis)
    4. 43.4: Hormonal Control of Human Reproduction
      1. 43.4.0: Male Hormones
      2. 43.4.1: Female Hormones
    5. 43.5: Fertilization and Early Embryonic Development
      1. 43.5.0: Fertilization
      2. 43.5.1: Cleavage, the Blastula Stage, and Gastrulation
    6. 43.6: Organogenesis and Vertebrate Formation
      1. 43.6.0: Organogenesis
      2. 43.6.1: Vertebrate Axis Formation
    7. 43.7: Human Pregnancy and Birth
      1. 43.7.0: Human Gestation
      2. 43.7.1: Labor and Birth
      3. 43.7.2: Contraception and Birth Control
      4. 43.7.3: Infertility
  44. 44: Ecology and the Biosphere
    1. 44.1: The Scope of Ecology
      1. 44.1.0: Introduction to Ecology
      2. 44.1.1: Organismal Ecology and Population Ecology
      3. 44.1.2: Community Ecology and Ecosystem Ecology
    2. 44.2: Biogeography
      1. 44.2.0: Biogeography
      2. 44.2.1: Energy Sources
      3. 44.2.2: Temperature and Water
      4. 44.2.3: Inorganic Nutrients and Other Factors
      5. 44.2.4: Abiotic Factors Influencing Plant Growth
    3. 44.3: Terrestrial Biomes
      1. 44.3.0: What constitutes a biome?
      2. 44.3.1: Tropical Wet Forest and Savannas
      3. 44.3.2: Subtropical Deserts and Chaparral
      4. 44.3.3: Temperate Grasslands
      5. 44.3.4: Temperate Forests
      6. 44.3.5: Boreal Forests and Arctic Tundra
    4. 44.4: Aquatic Biomes
      1. 44.4.0: Abiotic Factors Influencing Aquatic Biomes
      2. 44.4.1: Marine Biomes
      3. 44.4.2: Estuaries: Where the Ocean Meets Fresh Water
      4. 44.4.3: Freshwater Biomes
    5. 44.5: Climate and the Effects of Global Climate Change
      1. 44.5.0: Climate and Weather
      2. 44.5.1: Causes of Global Climate Change
      3. 44.5.2: Evidence of Global Climate Change
      4. 44.5.3: Past and Present Effects of Climate Change
  45. 45: Population and Community Ecology
    1. 45.1: Population Demography
      1. 45.1.0: Population Demography
      2. 45.1.1: Population Size and Density
      3. 45.1.2: Species Distribution
      4. 45.1.3: The Study of Population Dynamics
    2. 45.2: Environmental Limits to Population Growth
      1. 45.2.0: Exponential Population Growth
      2. 45.2.1: Logistic Population Growth
      3. 45.2.2: Density-Dependent and Density-Independent Population Regulation
    3. 45.3: Life History Patterns
      1. 45.3.0: Life History Patterns and Energy Budgets
      2. 45.3.1: Theories of Life History
    4. 45.4: Human Population Growth
      1. 45.4.0: Human Population Growth
      2. 45.4.1: Overcoming Density-Dependent Regulation
      3. 45.4.2: Age Structure, Population Growth, and Economic Development
    5. 45.5: Community Ecology
      1. 45.5.0: The Role of Species within Communities
      2. 45.5.1: Predation, Herbivory, and the Competitive Exclusion Principle
      3. 45.5.2: Symbiosis
      4. 45.5.3: Ecological Succession
    6. 45.6: Innate Animal Behavior
      1. 45.6.0: Introduction to Animal Behavior
      2. 45.6.1: Movement and Migration
      3. 45.6.2: Animal Communication and Living in Groups
      4. 45.6.3: Altruism and Populations
      5. 45.6.4: Mating Systems and Sexual Selection
    7. 45.7: Learned Animal Behavior
      1. 45.7.0: Simple Learned Behaviors
      2. 45.7.1: Conditioned Behavior
      3. 45.7.2: Cognitive Learning and Sociobiology
  46. 46: Ecosystems
    1. 46.1: Ecology of Ecosystems
      1. 46.1.0: Ecosystem Dynamics
      2. 46.1.1: Food Chains and Food Webs
      3. 46.1.2: Studying Ecosystem Dynamics
      4. 46.1.3: Modeling Ecosystem Dynamics
    2. 46.2: Energy Flow through Ecosystems
      1. 46.2.0: Strategies for Acquiring Energy
      2. 46.2.1: Productivity within Trophic Levels
      3. 46.2.2: Transfer of Energy between Trophic Levels
      4. 46.2.3: Ecological Pyramids
      5. 46.2.4: Biological Magnification
    3. 46.3: Biogeochemical Cycles
      1. 46.3.0: Biogeochemical Cycles
      2. 46.3.1: The Water (Hydrologic) Cycle
      3. 46.3.2: The Carbon Cycle
      4. 46.3.3: The Nitrogen Cycle
      5. 46.3.4: The Phosphorus Cycle
      6. 46.3.5: The Sulfur Cycle
  47. 47: Conservation Biology and Biodiversity
    1. 47.1: The Biodiversity Crisis
      1. 47.1.0: Loss of Biodiversity
      2. 47.1.1: Types of Biodiversity
      3. 47.1.2: Biodiversity Change through Geological Time
      4. 47.1.3: The Pleistocene Extinction
      5. 47.1.4: Present-Time Extinctions
    2. 47.2: The Importance of Biodiversity to Human Life
      1. 47.2.0: Human Health and Biodiversity
      2. 47.2.1: Agricultural Diversity
      3. 47.2.2: Managing Fisheries
    3. 47.3: Threats to Biodiversity
      1. 47.3.0: Habitat Loss and Sustainability
      2. 47.3.1: Overharvesting
      3. 47.3.2: Exotic Species
      4. 47.3.3: Climate Change and Biodiversity
    4. 47.4: Preserving Biodiversity
      1. 47.4.0: Measuring Biodiversity
      2. 47.4.1: Changing Human Behavior in Response to Biodiversity Loss
      3. 47.4.2: Ecological Restoration

44.3: Terrestrial Biomes

44.3.1: What constitutes a biome?

A biome consists of all the habitats of a community that make up similar ecosystems in a particular region.

Learning Objective

Differentiate biomes from other levels of ecological classification, including habitat

Key Points

  • The climate, including precipitation and temperature, and the geography control the type of biome found in a region.
  • There are two major classifications of biomes, which are terrestial and aquatic, and these include the types of biomes known as deserts, forests, grasslands, savannas, tundra, and freshwater environments.
  • A habitat is the location where a group of one type of organism (a population) lives, while a biome is a community made of all the habitats in a given region and climate.
  • Different organisms inhabit different types of biomes.
  • Each type of biome can be found in multiple locations on Earth depending on its climate, geography, and organisms.

Key Terms

ecotone

a transition area between two adjacent ecosystems

biome

any major regional biological community such as that of forest or desert

habitat

a specific place or natural conditions in which a plant or animal lives

population

a collection of organisms of a particular species, sharing a particular characteristic of interest, most often that of living in a given area

ecosystem

a system formed by an ecological community and its environment that functions as a unit

What Constitutes a Biome?

A group of living organisms of the same kind that live in the same place simultaneously is known as a population. Populations live together in habitats, which together make up a community. An ecosystem is a community of living organisms interacting with the non-living components of that environment.

A biome is a community on a global scale, where habitats flank each other, and is usually defined by the temperature, precipitation, and types of plants and animals that inhabit it. The Earth's biomes are categorized into two major groups: terrestrial and aquatic. Terrestrial biomes are based on land, while aquatic biomes include both ocean and freshwater biomes. The major types of biomes include: aquatic, desert, forest, grassland, savannas, and tundra.

Biome Attributes

Generally, biome classification is determined by the climate and geography of an area. Each biome consists of communities that have adapted to the different climate and environment inside the biome. Specifically, there are special vegetation adaptations as well as physical and behavioral adaptions made by animals in order to accommodate the environment. The eight major terrestrial biomes on Earth are each distinguished by characteristic temperatures and amount of precipitation . Comparing the annual totals of precipitation and fluctuations in precipitation from one biome to another provides clues as to the importance of abiotic factors in the distribution of biomes. Temperature variation on a daily and seasonal basis is also important for predicting the geographic distribution of the biome and the vegetation type in the biome.

Earth's Major Biomes

Earth's Major Biomes

Each of the world's major biomes is distinguished by characteristic temperatures and amounts of precipitation. Each type of biome can be found in multiple places.

The distribution of these biomes shows that the same biome can occur in geographically distinct areas with similar climates. Biomes have no distinct boundaries. Instead, there is a transition zone called an ecotone, which contains a variety of plants and animals. For example, an ecotone might be a transition region between a grassland and a desert, with species from both.

44.3.2: Tropical Wet Forest and Savannas

Tropical wet forests are characterized by high precipitation and humidity, while savannas have scattered trees and an extensive dry season.

Learning Objective

Recognize the distinguishing characteristics of tropical wet forests and savannas

Key Points

  • Tropical wet forests, located near the equator, have temperatures that range from 20°C - 34°C (68°F - 93°F), with little variation in seasonal temperatures.
  • The lack of seasonality, constant daily sunlight, ideal temperatures, and high rate of precipitation in tropical wet forests lead to increased plant growth and high species diversity.
  • The annual rainfall in tropical wet forests ranges from 125 to 660 cm (50–200 in); there is a high rate of precipitation even in the dry months.
  • Savannas, grasslands with scattered trees, are located in Africa, South America, and northern Australia.
  • Temperatures in savannas range from 24°C - 29°C (75°F - 84°F), with annual rainfall ranges from 10–40 cm (3.9–15.7 in).
  • Because savannas are very dry, trees do not grow as well as they do in other forest biomes and diversity is minimal.

Key Terms

deciduous

of or pertaining to trees which lose their leaves in winter or the dry season

understory

the layer of plants that grow in the shade of the canopy of a forest

biome

any major regional biological community such as that of forest or desert

Tropical Wet Forest

Tropical wet forests, also referred to as tropical rainforests, are found in equatorial regions . The vegetation is characterized by plants with broad leaves that fall off throughout the year. Unlike the trees of deciduous forests, the trees in this biome do not have a seasonal loss of leaves associated with variations in temperature and sunlight; these forests are "evergreen" year-round.

Terrestrial biomes

Terrestrial biomes

Each of the world's major biomes is distinguished by characteristic temperatures and amounts of precipitation. Polar ice and mountains are also shown. Tropical wet forests are depicted in green and are usually found at equatorial regions. Savannas are depicted in light pink and are usually located in Africa, South America, and Northern Australia.

The temperature and sunlight profiles of tropical wet forests are very stable in comparison to that of other terrestrial biomes, with the temperatures ranging from 20°C - 34°C (68°F - 93°F). Compared to other forest biomes, tropical wet forests have little variation in seasonal temperatures. This lack of seasonality leads to year-round plant growth, rather than the seasonal (spring, summer, and fall) growth seen in other biomes. In contrast to other ecosystems, tropical ecosystems do not have long days and short days during the yearly cycle. Instead, a constant daily amount of sunlight (11–12 hrs per day) provides more solar radiation and, thereby, a longer period of time for plant growth.

The annual rainfall in tropical wet forests ranges from 125-660 cm (50–200 in), with some monthly variation. While sunlight and temperature remain fairly consistent, annual rainfall is highly variable. Tropical wet forests have wet months in which there can be more than 30 cm (11–12 in) of precipitation, as well as dry months in which there are fewer than 10 cm (3.5 in) of rainfall. However, the driest month of a tropical wet forest still exceeds the annual rainfall of some other biomes, such as deserts.

Tropical wet forests have high net primary productivity because the annual temperatures and precipitation values in these areas are ideal for plant growth. Therefore, the extensive biomass present in the tropical wet forest leads to plant communities with very high species diversity . Tropical wet forests have more species of trees than any other biome. On average, between 100 and 300 species of trees are present in a single hectare (2.5 acres) of South America. One way to visualize this is to compare the distinctive horizontal layers within the tropical wet forest biome. On the forest floor is a sparse layer of plants and decaying plant matter. Above that is an understory of short shrubby foliage. A layer of trees rising above this understory is topped by a closed upper canopy: the uppermost overhead layer of branches and leaves. Some additional trees emerge through this closed upper canopy. These layers provide diverse and complex habitats for the variety of plants, fungi, animals, and other organisms within the tropical wet forests. For instance, epiphytes are plants that grow on other plants. Host plants are typically unharmed. Epiphytes are found throughout tropical wet forest biomes. Many species of animals use the variety of plants and the complex structure of the tropical wet forests for food and shelter. Some organisms live several meters above ground, having adapted to this arboreal lifestyle.

Tropical wet forests

Tropical wet forests

Tropical wet forests, such as the forests of Madre de Dios near the Amazon River in Peru, have high species diversity.

Savannas

Savannas are grasslands with scattered trees located in Africa, South America, and northern Australia . Savannas are hot, tropical areas with temperatures averaging from 24°C - 29°C (75°F - 84°F) and an annual rainfall of 10–40 cm (3.9–15.7 in). They have an extensive dry season. For this reason, forest trees do not grow as well as they do in the tropical wet forest or other forest biomes. As a result, there are relatively few trees within the grasses and forbs (herbaceous flowering plants) that dominate the savanna . Since fire is an important source of disturbance in this biome, plants have evolved well-developed root systems that allow them to quickly re-sprout after a fire.

Savannas

Savannas

Savannas, such as this one in Taita Hills Wildlife Sanctuary in Kenya, are dominated by grasses.

Animals commonly found in savannas in Africa include the African elephant, lions, gazelles, giraffes, ostriches, and many other mammals, birds, plants and invertebrates. The northern Australian savannas also have many types of plants, animals, insects, and reptiles, including marsupials (kangaroos and wallabies), bats, and rodents. In addition to the native animals such as foxes and Patagonian maras (rabbit-like rodents), savannas in South America are commonly used for grazing domestic livestock, such as sheep, goats, and cattle because of their open grasslands and herbaceous layer of plants .

44.3.3: Subtropical Deserts and Chaparral

Subtropical deserts are characterized by their dry environments, while chaparrals are characterized by the presence of shrubs.

Learning Objective

Recognize the distinguishing characteristics of subtropical deserts and chaparrals

Key Points

  • Subtropical deserts are centered on the Tropics of Cancer and Capricorn.
  • Subtropical deserts can be hot or cold, but they are all very dry,having very low annual precipitation.
  • Because precipitation is so low in subtropical deserts, most plants are annuals which utilize adaptations to conserve water.
  • Chaparrals (scrub forests) are found in California, along the Mediterranean Sea, and along the southern coast of Australia.
  • Chaparrals are very wet in the winter, but very dry in the summer months; most chaparral plants stay dormant during the summer.
  • Most chaparral plants are shrubs adapted to fires; some seeds only germinate after a fire.

Key Terms

subtropical desert

dry region centered on the Tropics of Cancer and Capricorn where evaporation exceeds precipitation

chaparral

a region of shrubs, typically dry in the summer and rainy in the winter

Subtropical Deserts

Subtropical deserts, which exist between 15° and 30° north and south latitude, are centered on the Tropics of Cancer and Capricorn. In some years, evaporation exceeds precipitation in this very dry biome. Subtropical hot deserts may have daytime soil surface temperatures above 60°C (140°F) and nighttime temperatures approaching 0°C (32°F). In cold deserts, temperatures may be as high as 25°C (77°F) and may drop below -30°C (-22°F). Subtropical deserts are characterized by low annual precipitation of fewer than 30 cm (12 in), with little monthly variation and lack of predictability in rainfall. In some cases, the annual rainfall can be as low as 2 cm (0.8 in), such as in central Australia ("the Outback") and northern Africa.

Types of Deserts

There are several types of deserts including high-pressure deserts, mid-continent deserts, rain-shadow deserts, and upwelling deserts. In high-pressure deserts, the high atmospheric pressure enables the air to retain more moisture and there is little rainfall. High-pressure deserts include the Sahara, Arabian, Thar, and Kalahari deserts, and the desert regions within the Arctic and Antarctic circles. Areas in the middle of a continent can receive little rainfall because moisture tends to condense before it reaches the middle of a large continent. Modern examples of mid-continent deserts are the Turkmenistan, Gobi, and Great Australian deserts. Third, rain-shadow deserts are created when moisture from the ocean condenses on one side of a mountain range. These mountain ranges usually have a rainforest on one side and a desert on the other. Examples of rain-shadow deserts include the Mojave desert in the rain-shadow of the Sierra Nevada, the Patagonian desert in the rain-shadow of the Andes, and the Iranian desert in the rain-shadow of the Zagros mountains. Finally, upwelling deserts exist adjacent to areas where cold currents rise to the ocean surface, reducing evaporation. Examples include the Atacama desert, the Western Sahara, and the Namib desert.

Adaptations for Deserts

The type of vegetation and limited animal diversity of this biome are closely related to the low and unpredictable precipitation. Very dry deserts lack perennial vegetation that lives from one year to the next. Instead, many plants are annuals that grow quickly, reproduce when rainfall does occur, and then die. Many other plants in these areas are characterized by having a number of adaptations that conserve water, such as deep roots, reduced foliage, and water-storing stems . Seed plants in the desert produce seeds that can remain in dormancy for extended periods between rains. To reduce water loss and conserve energy, many desert animals like the fennec fox are nocturnal and burrow during the day .

Fennec fox

Fennec fox

Fennec foxes live in the deserts of Northern Africa and have large ears for heat dissipation during the day. They stay in burrows during the day and are mostly active at night.

Desert plants

Desert plants

To reduce water loss, many desert plants have tiny leaves or no leaves at all. The leaves of ocotillo (Fouquieria splendens), shown here in the Sonora Desert near Gila Bend, Arizona, appear only after rainfall and then are shed.

Chaparral

The chaparral, also called the scrub forest, is found in California, along the Mediterranean Sea, and along the southern coast of Australia . The annual rainfall in this biome ranges from 65 cm to 75 cm (25.6–29.5 in), with the majority of rain falling in the winter. Due to the very dry summers, many chaparral plants are dormant during that season. The chaparral vegetation is dominated by shrubs and is adapted to periodic fires, with some plants producing seeds that only germinate after a hot fire . The ashes left behind after a fire are rich in nutrients, such as nitrogen, that fertilize the soil and promote plant regrowth.

Chaparrals

Chaparrals

The chaparral, or scrub forest, is dominated by shrubs adapted to periodic fires. Some plants produce seeds that only germinate after a hot fire.

44.3.4: Temperate Grasslands

Temperate grasslands are areas with low annual precipitation, fluctuating seasonal temperatures, and few trees.

Learning Objective

Recognize the distinguishing characteristics of temperate grasslands

Key Points

  • Temperate grasslands are found throughout central North America, where they are also known as prairies; they are also found in Eurasia, where they are known as steppes.
  • Temperate grasslands have hot summers and cold winters; the growing season occurs during the spring, summer, and fall.
  • Because of the low annual precipitation, temperate grasslands have very few trees.
  • Grasses are the dominant vegetation; their roots and rhizomes provide increased fertility to the soil.
  • Fires caused by lightening occur often in grasslands; without fires grasslands are converted to scrub forests.

Key Terms

prairie

an extensive area of relatively flat grassland with few, if any, trees, especially in North America

steppe

the grasslands of Eastern Europe and Asia

Temperate Grasslands

Temperate grasslands are found throughout central North America, where they are also known as prairies, and within Eurasia, where they are known as steppes . Temperate grasslands have pronounced annual fluctuations in temperature, with hot summers and cold winters. The annual temperature variation produces specific growing seasons for plants. Plant growth is possible when temperatures are warm enough and when ample water is available to sustain it, which typically occurs in the spring, summer, and fall. During much of the winter, temperatures are low and water, which is stored in the form of ice, is not available for plant growth.

Temperate grasslands in New Zealand

Temperate grasslands in New Zealand

Temperate tussock grasslands form expansive and distinctive landscapes in the South Island and to a lesser extent in the central plateau region of the North Island of New Zealand.

Annual precipitation ranges from 25 cm to 75 cm (9.8–29.5 in). Because of relatively-lower annual precipitation in temperate grasslands, there are few trees, except for those found growing along rivers or streams. The dominant vegetation tends to consist of grasses; some prairies sustain populations of grazing animals . The vegetation is very dense and the soils are fertile because the subsurface of the soil is packed with the roots and rhizomes (underground stems) of these grasses, which anchor plants into the ground and replenish the organic material (humus) in the soil when they die and decay.

Przewalski's horses on the Asian steppes

Przewalski's horses on the Asian steppes

The Przewalski's horse is a rare and endangered subspecies of wild horse. By the end of the 1950s, only 12 individual Przewalski's horses were left in the world and several reintroduction programs have released populations back into the grasslands in Mongolia and Ukraine.

Fires, mainly caused by lightning, are a natural disturbance in temperate grasslands. When fire is suppressed, the vegetation eventually converts to scrub and dense forests. Often, the restoration or management of temperate grasslands requires the use of controlled burns to suppress the growth of trees and maintain the grasses. Burning causes new grass to grow, which brings back the grazing animals.

Organisms Found in Temperate Grasslands

Mites, insect larvae, nematodes and earthworms inhabit deep soil, which can reach 6 meters (20 ft) underground in undisturbed grasslands on the richest soils of the world. These invertebrates, along with symbiotic fungi, extend the root systems, break apart hard soil, enrich it with urea and other natural fertilizers, trap minerals and water, and promote growth. Some types of fungi make the plants more resistant to insect and microbial attacks. Grasslands also are home to a vast variety of mammals, reptiles, birds, and insects. Typical large mammals include the Giant Anteater and populations of grazing animals, such as the Blue Wildebeest, Przewalski's Horse, and the American Bison .

Grazing animals

Grazing animals

The American bison (Bison bison), more commonly called the buffalo, is a grazing mammal that once populated American prairies in huge numbers.

44.3.5: Temperate Forests

Temperate forests are characterized by fluctuating seasonal temperatures and constant-but-moderate rainfall.

Learning Objective

Recognize the distingushing chracteristics of temperate forests

Key Points

  • Temperate forests are the most common biome in eastern North America, Western Europe, Eastern Asia, Chile, and New Zealand.
  • Temperatures in temperate forests fluctuate; there are defined growing seasons during spring, summer, and early fall.
  • Because temperate forests have moderate annual precipitation, the dominant plants are the deciduous trees.
  • Deciduous trees experience a dormant period in the winter, which is why temperate forests have less net productivity than tropical forests.
  • Temperate forests are more open than tropical wet forests since their trees do not grow as tall.
  • The soils of the temperate forests are rich in inorganic and organic nutrients; this is due to the thick layer of leaf litter on forest floors, which returns nutrients to the soil.

Key Terms

temperate forest

forest concentrations formed in the northern and southern hemisphere, or in temperate regions; main characteristics include wide leaves, large and tall trees, and seasonal vegetation

deciduous

of or pertaining to trees which lose their leaves in winter or the dry season

Temperate Forests

Temperate forests are the most common biome in eastern North America, Western Europe, Eastern Asia, Chile, and New Zealand. This biome is found throughout mid-latitude regions. Temperatures ranging between -30°C - 30°C (-22°F - 86°F) drop below freezing on an annual basis, resulting in defined growing seasons during the spring, summer, and early fall. Precipitation is relatively constant throughout the year, ranging between 75 cm and 150 cm (29.5–59 in).

Because of the moderate, annual rainfall and temperatures, deciduous trees are the dominant plant in this biome . Deciduous trees lose their leaves each fall, remaining leafless in the winter; thus, no photosynthesis occurs during the dormant winter period. Each spring, new leaves appear as the temperature increases. Because of the dormant period, the net primary productivity of temperate forests is less than that of tropical wet forests. In addition, temperate forests show less diversity of tree species than do tropical wet forest biomes.

Deciduous trees

Deciduous trees

Deciduous trees, those that lose their leaves seasonally, are the dominant plant in the temperate forest.

The trees of the temperate forests leaf out and shade much of the ground; however, this biome is more open than tropical wet forests because trees in the temperate forests do not grow as tall as the trees in tropical wet forests. The soils of the temperate forests are rich in inorganic and organic nutrients due to the thick layer of leaf litter on forest floors. As this leaf litter decays, nutrients are returned to the soil. The leaf litter also protects soil from erosion, insulates the ground, and provides habitats for invertebrates (such as the pill bug or roly-poly, Armadillidium vulgare) and their predators, such as the red-backed salamander (Plethodon cinereus).

Organisms Found in Temperate Deciduous Forests

The leaf litter is home to invertebrates (such as the pill bug or roly-poly, Armadillidium vulgare) and their predators, including the red-backed salamander (Plethodon cinereus). Pileated woodpeckers depend upon dead or dying trees as a source of food and for constructing their nests, and many migratory birds, such as the spring warblers, time their arrival to coincide with the opening of the tree canopy, which provides the insects that are their principal food sources for raising young. Many well-known animals are found in temperate deciduous forests including squirrels, deer , and bears. The top predators in deciduous forest were once wolves and cougars, but their populations have been in decline.

White-tailed deer

White-tailed deer

Deer such as the white-tailed deer of North America are common inhabitants of temperate forests.

44.3.6: Boreal Forests and Arctic Tundra

The boreal forest is characterized by coniferous trees, while the arctic tundra is characterized by permanently frozen soils.

Learning Objective

Recognize the distinguishing characteristics of boreal forests and arctic tundra

Key Points

  • The boreal forest is found across most of Canada, Alaska, Russia, and northern Europe; the arctic tundra lies north of the boreal forest.
  • The boreal forest has cold, dry winters and short, cool, wet summers with precipitation that takes the form of snow; due to this environment, evergreen coniferous trees are the dominant plants.
  • The soil in boreal forest regions is usually acidic and contains little available nitrogen.
  • Boreal forests have lower productivity than tropical or temperate forests; they also have less diversity, with only a tree layer and ground layer.
  • Temperatures in the arctic tundra are cold year-round and precipitation is very low.
  • Plants in the arctic tundra have a very short growing season of approximately 10–12 weeks, but during this time, growth is rapid; plants are low to the ground and the soil is permanently frozen.

Key Terms

boreal forest

a biome found in the Northern Hemisphere and characterized by coniferous forests consisting mostly of pines, spruces, and larches

arctic tundra

a biome found in the far Northern Hemisphere, north of the boreal forests, where the subsoil is permanently frozen

permafrost

permanently frozen ground

Boreal Forests

The boreal forest, also known as taiga or coniferous forest, the world's largest terrestrial biome, is found south of the Arctic Circle and across most of Canada, Alaska, Russia, and northern Europe. This biome has cold, dry winters and short, cool, wet summers. Temperatures vary from −54°C - 30°C (-65°F - 86°F) throughout the whole year. The summers, while short, are generally warm and humid. In much of the taiga, -20°C (-4°F) would be a typical winter day temperature, while 18°C (64°F) would be an average summer day.The annual precipitation, from 40 cm -100 cm (15.7–39 in), usually takes the form of snow. Little evaporation occurs because of the cold temperatures.

The long and cold winters in the boreal forest have led to the predominance of cold-tolerant, cone-bearing plants. These are evergreen, coniferous trees such as pines, spruces, and firs, which retain their needle-shaped leaves year-round. Evergreen trees can photosynthesize earlier in the spring than can deciduous trees because less energy from the sun is required to warm a needle-like leaf than a broad leaf. This benefits evergreen trees, which grow faster than deciduous trees in the boreal forest. In addition, soils in boreal forest regions tend to be acidic, with little available nitrogen. Leaves are a nitrogen-rich structure that deciduous trees must produce yearly. Therefore, coniferous trees that retain nitrogen-rich needles may have a competitive advantage over the broad-leafed deciduous trees.

The net primary productivity of boreal forests is lower than that of temperate forests and tropical wet forests. The aboveground biomass of boreal forests is high because these slow-growing tree species are long-lived, accumulating standing biomass over time. Plant species diversity is less than that seen in temperate forests and tropical wet forests. Boreal forests lack the pronounced elements of the layered forest structure seen in tropical wet forests. The structure of a boreal forest is often only a tree layer and a ground layer . When conifer needles are dropped, they decompose more slowly than do broad leaves; therefore, fewer nutrients are returned to the soil to fuel plant growth.

Plants in the boreal forest

Plants in the boreal forest

The boreal forest (taiga) has low-lying plants and conifer trees; it often consists of only a tree layer and a ground layer.

Arctic Tundra

The Arctic tundra, lying north of the subarctic boreal forest, is located throughout the Arctic regions of the northern hemisphere . The average winter temperature is -34°C (-29.2°F), while the average summer temperature is from 3°C - 12°C (37°F - 52°F). Plants in the arctic tundra have a very short growing season of approximately 10–12 weeks. However, during this time, there are almost 24 hours of daylight, so plant growth is rapid. The annual precipitation of the Arctic tundra is very low (about 15-25 cm), with little annual variation in precipitation. As in the boreal forests, there is little evaporation due to the cold temperatures.

Plants in the Arctic tundra are generally low to the ground . There is little species diversity, low net primary productivity, and low aboveground biomass. The soils of the Arctic tundra may remain in a perennially frozen state referred to as permafrost. The permafrost makes it impossible for roots to penetrate deep into the soil and slows the decay of organic matter, which inhibits the release of nutrients from organic matter. During the growing season, the ground of the Arctic tundra can be completely covered with plants or lichens.

Plants in the Arctic tundra

Plants in the Arctic tundra

Low-growing plants such as shrub willow dominate the tundra landscape, shown here in the Arctic National Wildlife Refuge.

The biodiversity of the tundras is low: there are 1,700 species of vascular plants and only 48 species of land mammals. Notable animals in the Arctic tundra include caribou (reindeer ), musk ox, arctic hare, arctic fox, snowy owl, lemmings, and polar bears. Due to the harsh climate, tundra regions have seen little human activity, even though they are sometimes rich in natural resources such as oil and uranium.

Caribou (reindeer) in the tundra

Caribou (reindeer) in the tundra

Some populations of the North American caribou migrate the farthest of any terrestrial mammal, traveling up to 5,000 km (3,100 mi) a year.

Attributions

  • What constitutes a biome?
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "Ecology/Biological community." http://en.wikibooks.org/wiki/Ecology/Biological_community%23Terrestrial_Biomes. Wikibooks CC BY-SA 3.0.
    • "biome." http://en.wiktionary.org/wiki/biome. Wiktionary CC BY-SA 3.0.
    • "ecosystem." http://en.wiktionary.org/wiki/ecosystem. Wiktionary CC BY-SA 3.0.
    • "population." http://en.wiktionary.org/wiki/population. Wiktionary CC BY-SA 3.0.
    • "habitat." http://en.wiktionary.org/wiki/habitat. Wiktionary CC BY-SA 3.0.
    • "ecotone." http://en.wiktionary.org/wiki/ecotone. Wiktionary CC BY-SA 3.0.
    • "Daniel Williamson, 3.1.2 Biomes. December 6, 2013." http://cnx.org/content/m43240/latest/. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. December 7, 2013." http://cnx.org/content/m44858/latest/. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. December 7, 2013." http://cnx.org/content/m44858/latest/. OpenStax CNX CC BY 3.0.
  • Tropical Wet Forest and Savannas
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "deciduous." http://en.wiktionary.org/wiki/deciduous. Wiktionary CC BY-SA 3.0.
    • "biome." http://en.wiktionary.org/wiki/biome. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 23, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "understory." http://en.wiktionary.org/wiki/understory. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. December 6, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_03.jpg. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_02.jpg. OpenStax CNX CC BY 3.0.
  • Subtropical Deserts and Chaparral
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "Boundless." https://cms.boundless.com/editor/%23atoms/12167. Boundless Learning CC BY.
    • "chaparral." http://en.wiktionary.org/wiki/chaparral. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_05.jpg. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_04.jpg. OpenStax CNX CC BY 3.0.
    • "Fennec fox." http://en.wikipedia.org/wiki/Fennec_fox. Wikipedia CC BY-SA 2.0.
  • Temperate Grasslands
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "prairie." http://en.wiktionary.org/wiki/prairie. Wiktionary CC BY-SA 3.0.
    • "steppe." http://en.wiktionary.org/wiki/steppe. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "Przewalski's horse." http://en.wikipedia.org/wiki/Przewalski's_horse. Wikipedia GNU FDL.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_06.jpg. OpenStax CNX CC BY 3.0.
    • "New Zealand tussock grasslands." http://en.wikipedia.org/wiki/New_Zealand_tussock_grasslands. Wikipedia Public domain.
  • Temperate Forests
    • "OpenStax College, Biology. October 17, 2013." http://openstaxcollege.org/textbooks/biology. OpenStax CNX CC BY-SA 3.0.
    • "temperate forest." http://en.wikipedia.org/wiki/temperate%20forest. Wikipedia CC BY-SA 3.0.
    • "deciduous." http://en.wiktionary.org/wiki/deciduous. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_07.jpg. OpenStax CNX CC BY 3.0.
    • "Deer." http://en.wikipedia.org/wiki/Deer. Wikipedia Public domain.
  • Boreal Forests and Arctic Tundra
    • "Boundless." http://www.boundless.com/. Boundless Learning CC BY-SA 3.0.
    • "OpenStax College, Biology. October 23, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Biology. October 17, 2013." http://cnx.org/content/m44858/latest/?collection=col11448/latest. OpenStax CNX CC BY 3.0.
    • "Tundra." http://en.wikipedia.org/wiki/Tundra. Wikipedia CC BY-SA 3.0.
    • "arctic tundra." http://en.wikipedia.org/wiki/arctic%20tundra. Wikipedia CC BY-SA 3.0.
    • "Taiga." http://en.wikipedia.org/wiki/Taiga. Wikipedia CC BY-SA 3.0.
    • "boreal forest." http://en.wikipedia.org/wiki/boreal%20forest. Wikipedia CC BY-SA 3.0.
    • "permafrost." http://en.wiktionary.org/wiki/permafrost. Wiktionary CC BY-SA 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_08.jpg. OpenStax CNX CC BY 3.0.
    • "OpenStax College, Terrestrial Biomes. October 17, 2013." http://cnx.org/content/m44858/latest/Figure_44_03_09.jpg. OpenStax CNX CC BY 3.0.
    • "Reindeer." http://en.wikipedia.org/wiki/Reindeer. Wikipedia GNU FDL.

Annotate

Next Chapter
44.4: Aquatic Biomes
PreviousNext
Biology
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org