Skip to main content

Body Physics: Motion to Metabolism: Accelerating the Body

Body Physics: Motion to Metabolism
Accelerating the Body
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

63

Accelerating the Body

Newton’s Second Law of Motion

Newton's First Law tells us that we need a net force in order to create an acceleration.   As you might expect, a larger net force will cause a larger acceleration, and the same net force will give a smaller mass a greater acceleration. Newton's Second Law summarizes all of that into a single equation relating the net force, mass, and acceleration:

(1)   \begin{equation*} \bold{F_{net}} = m\bold{a} \end{equation*}

Finding Acceleration from Net Force

If we know the net force and want to find the acceleration, we can solve Newton's Second Law for the acceleration:

(2)   \begin{equation*} \bold{a} = \frac{\bold{F_{net}}}{m} \end{equation*}

Now we see that larger net forces create larger accelerations and larger masses reduce the size of the acceleration. In fact, an object’s mass is a direct measure of an objects resistance to changing its motion, or its inertia.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=4790

Finding Net Force from Acceleration

Everyday Example: Parachute Opening

In the previous chapter we found that if opening a parachute slows a skydiver from 54 m/s to 2.7 m/s in just 2.0 s of time then they experienced an average upward acceleration of 26 m/s/s . If the mass of our example skydiver is 85 kg, what is the  average net force on the person?

We start with Newton’s Second Law of Motion

    \begin{equation*} \bold{F_{net}} = m\bold{a} \end{equation*}

Enter in our values:

    \begin{equation*} \bold{F_{net}} = (85\,\bold{kg})(26\,\bold{m/s/s}) = 2200 \,\bold{N} \end{equation*}

The person experiences an average net force of 2200 N upward during chute opening. When the chute begins to open the body position changes to feet first, which significantly reduces air resistance, so air resistance is no longer balancing the body weight. Therefore, the harness needs to support body weight plus provide the additional unbalanced 2200 N upward force on the person. The skydiver’s body weight is Fg = 85 kg x 9.8 m/s/s = 833 N, so the force on them from the harness must be 2833 N. That force is actually more than three times greater than their body weight, but is distributed over the wide straps that make up the leg loops and waist loop of the harness, which helps to prevent injury.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=4790

Check out this simulation to see how forces combine to create net forces and accelerations:

Forces and Motion: Basics

Free-Fall Acceleration

In the absence of air resistance, heavy objects do not fall faster than lighter ones and all objects will fall with the same acceleration. Need experimental evidence? Check out this video:

Thumbnail for the embedded element "Brian Cox visits the world's biggest vacuum | Human Universe - BBC"

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/bodyphysics/?p=4790

It’s an interesting quirk of our universe that the same property of an object, specifically its mass, determines both the force of gravity on it and its resistance to accelerations, or inertia. Said another way,  the inertial mass and the gravitational mass are equivalent. That is why we the free-fall acceleration for all objects has a magnitude of 9.8 m/s/s, as we will show in the following example.

Everyday Example: Free-Falling

Let’s calculate the initial acceleration of our example skydiver the moment they jump. At this moment they have the force of gravity pulling them down, but they have not yet gained any speed, so the air resistance (drag force) is zero. The net force is then just gravity, because it is the only force, so they are in free-fall for this moment. Starting with Newton's Second Law:

(3)   \begin{equation*} \bold{a} = \frac{\bold{F_{net}}}{m} \end{equation*}

Gravity is the net force in this case because it is the only force, so we just use the formula for calculating force of gravity near the surface of Earth, add a negative sign because down is our negative direction (\bold{F_g} = -mg), and enter that for the net force: :

(4)   \begin{equation*} \bold{a} = \frac{-mg}{m} \end{equation*}

We see that the mass cancels out,

(5)   \begin{equation*} \bold{a} = \frac{-\cancel{m}g}{\cancel{m}} = -g = -9.8 \bold{\frac{m}{s^2}} \end{equation*}

We see that our acceleration is negative, which makes sense because the acceleration is downward. We also see that the size, or magnitude, of the acceleration is g = 9.8 m/s2. We have just shown that in the absence of air resistance, all objects falling near the surface of Earth will experience an  acceleration equal in size to  9.8 m/s2, regardless of their mass and weight. Whether the free-fall acceleration is -9.8 m/s/s  or +9.8 m/s/s depends on if you chose downward to be the negative or positive direction.

Annotate

Next Chapter
Graphing Motion
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org