Skip to main content

Body Physics: Motion to Metabolism: Preventing Hypothermia

Body Physics: Motion to Metabolism
Preventing Hypothermia
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

90

Preventing Hypothermia

Hypothermia

 The Stages of Hypothermia
StageCore Body Temperature °CSymptoms
Mild Hypothermia35°-33°shivering, poor judgment, amnesia and apathy, increased heart and respiratory rate, cold and/or pale skin
Moderate Hypothermia32.9°-27°progressively decreasing levels of consciousness, stupor, shivering stops, decreased heart and respiratory rate, decreased reflex and voluntary motion, paradoxical undressing.
Severe Hypothermia< 26.9°low blood pressure and bradycardia, no reflex, loss of consciousness, coma, death

[1]

Thermal Power

The rate at which chemical potential energy is converted to thermal energy by the body (and other systems) is the thermal power. When the thermal power is less than than the heat loss rate then the body will lose thermal energy over time and body temperature will drop. The only options for preventing hypothermia are slowing down the heat loss rate and/or increasing the thermal power. You can fight off hypothermia by doing additional work, such as jumping around, because the body is inefficient so most of the chemical potential energy used to do the work actually becomes thermal energy that can replace what was lost as heat. Shivering is your body’s way of forcing you to take this approach and signifies a mild stage of hypothermia. However, this strategy will only be successful until you have used up your readily accessible supply of chemical potential energy. Basically, as you get tired this method will fail. The overall chemical to thermal energy conversion rate can be supplemented by technology such chemical hand/foot warmers and battery powered heated clothing, but in most situations will your body does the bulk of the conversion. Eventually these supplemental energy sources will also run out and body temperature will continue to drop. Moderate hypothermia is indicated by the end of shivering and increased mental confusion, possibly including hallucinations. Severe hypothermia leads to loss of consciousness and if not treated, eventually death.[2]

Everyday Example: Human Thermal Power

The typical daily intake of chemical potential energy required by the human body is 2000 Calories. A hard 8 hours of manual labor only accounts for 1/3 of a day and during the other 2/3 almost no useful work is done by the body so nearly all chemical energy being used is converted to thermal energy. Even when useful work is being done, the body is only about 25% efficient so most of the chemical energy used is still converted to thermal energy. Therefore we can reasonably approximate the thermal power (imageP_H" title="Rendered by QuickLaTeX.com" height="13" width="72" style="vertical-align: -2px;">) of the human body to be roughly 2000 Calories/day by assuming all chemical energy used eventually becomes thermal energy. Remembering that food Calories with a capitol C are actually kcals and that 4.186 Joules are in one calorie, we can use unit conversion to find the thermal power in SI units of Watts.

    \begin{equation*} P_H = \left(\frac{2000 \,\bold{Calories}}{1\,\bold{day}}\right)  \left(\frac{1000 \,\bold{cal}}{1\,\bold{Cal}}\right) \left(\frac{4.186 \,\bold{J}}{1\,\bold{cal}}\right)  \left(\frac{1 \,\bold{day}}{24\,\bold{hrs}}\right) \left(\frac{1 \,\bold{hr}}{60\,\bold{min}}\right) \left(\frac{1 \,\bold{min}}{60\,\bold{s}}\right) \approx 100\,\bold{W} \end{equation*}

Preventing Hypothermia

Your body loses heat to the environment due to a natural tenancy of systems to move toward thermal equilibrium. In fact the Second Law of Thermodynamics tells us that objects left to themselves will always spontaneously trend toward thermal equilibrium with their environment. For two objects to reach thermal equilibrium, heat must transfer away from the hot object and into the cold one so that their temperatures move closer together. Therefore, a consequence of the Second Law of Thermodynamics is that heat will always spontaneously transfer from warmer temperature to colder temperature. Homeostasis is a constant battle against the consequences of the Second Law of Thermodynamics. We aren’t able to violate the second law of thermodynamics and stop or reverse the spontaneous thermal energy transfer away from the body in cold environments, we can only try to slow it down.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=1076

Heat Transfer

Materials designed to slow the heat transfer rate, or thermal insulation, can be used to help prevent hypothermia. There are three ways that heat is transferred out of the body, but all three methods follow the Second Law of Thermodynamics and transfer heat from warmer temperature to colder. The heat transfer mechanisms are:

  1. Conduction 
  2. Convection
  3. Radiation

The following chapters will discuss these mechanisms and the types of insulation used to prevent each.

Everyday Examples: Insulation

My father was a bush pilot in Alaska. When I was about 13 years old we were landing on a lake in our hometown and found two teenagers clinging to their overturned canoe. The first boy had a stocky build and second was tall and thin. The first boy climbed onto the float and into the plane with some assistance, the thin boy was unable to move and was dragged out of the water just before losing consciousness as we rode back to shore. We later learned that the thin boy had reached the third stage of hypothermia and was likely only minutes from death. The thin boy had less body mass, thinner layers of tissue to provide insulation, and less chemical potential energy stored up for conversion to thermal energy. Both boys were wearing cotton clothing, which did not provide much insulating value in the water. In the following chapters we will learn how each of these factors contributed to the dramatically different in responses of the two boys to their unplanned cold water immersion.


  1. Adapted from "Web-based hypothermia information: a critical assessment of Internet resources and a comparison to peer-reviewed literature" by M Spencer, Jeremy & Sheridan, Scott, Perspectives in public health, 135(2) · February 2014↵
  2. "Hypothermia and Cold Related Injuries" by J. Justad, MD, DDP, Health and Safety Guidelines, Montana Department of Health and Human Services↵

Annotate

Next Chapter
Cotton Kills
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org