Skip to main content

Body Physics: Motion to Metabolism: Unit 4 Practice and Assessment

Body Physics: Motion to Metabolism
Unit 4 Practice and Assessment
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

35

Unit 4 Practice and Assessment

Outcome 1

1) Which has greater density between a kilogram of feathers and a kilogram of pennies? Which has greater volume? Which has greater mass?

2) What is the weight in Newtons of a 3 kg textbook?

3) (a) Convert your own weight from pounds to Newtons.

(b) Then calculate your mass in kilograms. Show all work.

4) The acceleration due to gravity (g) on the moon is 1/6 that on the surface of Earth.

(a) Based on your answers to the previous question, what would your weight be on the moon?

(b) What would your mass be on the moon?

Outcome 2

5) For each object below, draw a free body diagram:

a) A car hanging from a crane (there are two forces).

b) A car skidding to a stop (there are three forces).

c) A car with the parking brake set being pushed on by a someone, but not moving (there are four forces here, but two of them are the same type).

6) A person stands on a scale.

a) What type of force is pulling them down?

b) What type of force is provided by the scale to hold them up?

c) Draw a free body diagram of this situation.

7) A 7 N force pushes on an object to the right and a 7 N force pushes on the object to the left.

(a) What is the net force?

(b) Can the object be in static equilibrium?

8) A 5 N force pushes on an object to the right and a 7 N force pushes on the object to the left.

(a) What is the net force?

(b) Can the object be in static equilibrium?

9) You push on a large box with 120 N of force, but it doesn’t move.

(a) How large is the friction force?

(b) Draw a free body diagram of the situation.

Outcome 3

10)   You are helping a 48 lb toddler learn to float in a swimming pool.

(a) What weight of water must the toddler displace in order to float?

(b) What volume of water must the toddler displace in order to float?

(c) Currently the toddler doesn’t like water to cover his ears and holds his head mostly out of the water.  You notice that it feels as though he only weighs 3 lbs. Draw a free body diagram of the situation.

(d) How large is the buoyant force on the toddler?

(e) If the toddler were to lower his head fully half-way into the water (past the ears), he would displace another 0.4 gallons worth of water. Would the toddler float then? [Hint: Water as a weight density of 8.34 lbs/gal]

11) An object has a volume of 0.5 m3 and weight of 150 N.

(a) What is the maximum volume of water it can displace?

(b) What weight of water can it displace?

(c)   Will it float?

(d) Is the object in the previous problem more or less dense than water?

Outcome 4

12) Calculate the density of the object referred to in the previous problem.

13) An object has a weight of 5.5 N and an apparent weight of 3.5 N when fully submerged.

(a) Will the object float?

(b)  Calculate the density of the object.

Annotate

Next Chapter
Unit 5: Maintaining Balance
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org