Skip to main content

Body Physics: Motion to Metabolism: The Scientific Process

Body Physics: Motion to Metabolism
The Scientific Process
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

11

The Scientific Process

Science as a Cycle

The scientific method alone is not enough to make real progress in accumulation of  scientific knowledge, but using it as the hub of a cyclic process has led to the massive rate of scientific and technological advancement we have seen over the last century.   Science can be thought of as a continuous process guided by with the scientific method as discussed in the following video:

Thumbnail for the embedded element "The scientific method is crap: Teman Cooke at TEDxLancaster"

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/bodyphysics/?p=196

Reinforcement Exercise

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=196

Modern science is done according to a complex process of checks and balances, such as replication and peer-review. This complexity emerged to help ensure the integrity of scientific results, but the process remains rooted in the basic scientific method. You can apply the basic scientific method every day, just as Jolene did, in order to ensure that you make informed decisions that aren’t overly biased by inaccurate data, false logic, or your own preconceptions.

A flow diagram of the scientific cycle starts from personal and reported observations and moves into formulate question, then search existing knowledge. If the knowledge is found the chart ends. If not, it continues into formulating a testable hypothesis or model, making predictions, designing experiments, running experiments, analyzing data, comparing results to predictions and making conclusions, reporting results, peer review. Arrows indicate that the process is cyclic and repeated. A large X indicates that reporting results is not represented by the sensational headlines saying scientists have proven something. Peer reviewed reports are combined with other evidence to create a preponderance of evidence, which leads to discovery of common behavior described by laws and principles or theories that provide explanation of observations, all of which are combined to advance technology and inform decisions.
The complex modern scientific process built around the basic scientific method (within dashed lines).

The previous diagram illustrates the complex scientific process, but also highlights the basic scientific method that Jolene used in the previous example, on which the whole process is built. After observation, the basic scientific method follows the green and yellow boxes within the dotted line in the diagram below. Generally speaking, the green boxes comprise theoretical science and the yellow boxes comprise experimental science. These days most scientists participate in some or all parts of both categories and collaborate with other scientists to complete the process.

The uncertainty associated with all measurements means that science cannot prove anything, despite what the media often claims. Instead, the scientific process produces reviewed and reproduced conclusions that account for uncertainty. (We will learn how scientists recognize and deal with uncertainty in the next chapter).  Scientific conclusions provide evidence for or against hypotheses.

Laws, Principles and Theories

Laws

When a certain behavior is repeatedly observed across many systems of many sizes and time periods, then the behavior becomes a law. A law is not an explanation of the observed behavior. For example, the 1st Law of Thermodynamics states that the when a system does work and/or loses heat, the internal energy of the system must drop by an amount equal to the work done plus the heat lost.

Principles

Principles summarize rules created based on collections of laws and followed by scientists when formulating hypotheses, designing experiments, analyzing results. For example, the principle of conservation of energy states that energy cannot be created or destroyed, only transferred. The 1st Law of Thermodynamics supports the principle of conservation of energy.

Theories

When a preponderance of evidence supports a particular explanation for observed occurrences (phenomena), then the explanation becomes a theory.  Laws, principles, and theories are what the general public and media often refer to as scientific facts, but we don’t need to introduce another definition so we won’t use fact here. We will combine and apply a variety of laws, principles, and theories to understand how the body functions.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=196

Annotate

Next Chapter
Scientific Models
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org