Skip to main content

Body Physics: Motion to Metabolism: Unit 3 Practice and Assessment

Body Physics: Motion to Metabolism
Unit 3 Practice and Assessment
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

26

Unit 3 Practice and Assessment

Outcomes 1, 2, 3 

  1. Would putting larger tires on a vehicle introduce random or systematic error into the speedometer reading? Would this affect the accuracy or precision (or both) of the speedometer? Explain your answers.

  1. Would a wiggling baby introduce random or systematic error into a measurement of its weight? Would this affect the accuracy or precision (or both) of the weight measurement? Explain your answers.

  1. Would slightly under-filling measuring cups to prevent spilling ingredients introduce random or systematic error into the measurement of ingredient volumes? Would this affect the accuracy or precision (or both) of the measurement volumes. Explain your answers.

A set of measurements of a physical quantity was made for comparison to an accepted standard value. The data were plotted in graphs with the measured values on the horizontal axis and the number of times each value occurred on the vertical axis. This type of graph is known as a histogram and the data on the vertical axis are called the frequencies. Use the histograms below to answer the questions that follow.

Each histogram has measurement value plotted on the horizontal axis and frequency of occurrence for each value on the vertical axis. Each histogram has a vertical line crossing measurement value 17 to indicate the accepted standard value of this measurement. Histogram 1 has peak frequency of 6 near value 17 and frequencies greater than 2 between values 12 and 22. Histogram 2 has a maximum near a value of 16 and no frequency greater than 2 outside the range of values 15 to 18. Histogram 3 has a maximum near 26 and frequencies greater than two between value 22 and 30. Histogram 4 has a maximum near a value of 25 and has frequency greater than 2 between values 24 and 26.
Histograms of values measured during an experiment.
  1. For each histogram state whether the data suggest the measurements were relatively accurate, precise, both, or neither. Explain your reasoning.
  2. For each histogram state what types of errors were likely to be relatively significant: random, systematic, both or neither. Explain your reasoning.

    Outcome 4

    6)A person measures his or her heart rate by counting the number of beats in 30 s as timed using a clock on the wall, such as the one in the image below. They start counting when the second hand jumps onto a particular tick mark (say the 12) and then stop counting when it jumps to the opposite mark (say the 6). A reasonable estimate of the uncertainty in the time measurement would be which of the values listed below? Explain your reasoning.

a) 0.05 s

b) 0.5 s

c) 5 s

d) 50 s

Typical wall clock with hour, minute, second hands and 1 hour, 1 min (1s) divisions. Image Credit: Clock by Lee Haywood via Wikimedia Commons

[1]

  1. Estimate the uncertainty in counting the beats in the previous problem. Explain your reasoning.

*8) If 47 beats were counted by the person in the previous problem, what a was their heart rate in BPM in correct significant figures. Indicate the total % uncertainty and total uncertainty.


  1. Clock By Lee Haywood from Wollaton, Nottingham, England (Clock) [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons↵

Annotate

Next Chapter
Unit 4: Better Body Composition Measurement
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org