Skip to main content

Body Physics: Motion to Metabolism: Falling

Body Physics: Motion to Metabolism
Falling
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

58

Falling

Patient Falls

In the previous unit on the Strength and Elasticity we learned that lifting and holding heavy objects places quite large force (and resulting stress) on the body, so moving patients puts Jolene at risk for injury.  Jolene must assume that risk because even those forces are small compared to forces experienced when impacting a hard surface during a fall. Therefore, patient falls must be avoided.

  • “Falls with serious injury are consistently among the Top 10 sentinel events reported to The Joint Commission’s Sentinel Event database […] with the majority of these falls occurring in hospitals.
  • Every year in the United States, hundreds of thousands of patients fall in
    hospitals, with 30-50 percent resulting in injury.
  • Injured patients require additional treatment and sometimes prolonged hospital
    stays that increase medical costs by an average of $14,000.”

[1]

X-Ray image showing a fractured clavicle (collar bone). Clavicle fractures are a one of the most common injuries resulting from falls. This particular fracture occurred during a car accident. of Image Credit: Clavicle Fracture Left uploaded by Majorkev via Wikimedia Commons

[2]

Impacts due to falls are not the only source of large forces.  In fact, any situation involving a rapid change in motion will produce relatively large forces. These include car accidents, collisions between people, jumping, landing, and explosive body movements. As a result, medical professionals and first-responders often treat patients who experience mechanisms of injury (MOI) that involve rapid changes in motion as having spinal and/or internal injuries until confirmed otherwise by medical imaging or complete examination. Before we can analyze the forces associated with rapid changes in motion, we must also learn how to quantify motion itself. Falling provides an excellent place to begin the study of motion, so let’s start there.

Skydiving Free Fall

A group of skydivers falling in various body orientations previous to opening parachutes
Skydivers adjust body orientation to tune fall speed and adjust their relative vertical positions. Image credit:  Skydive Miami by Norcal21jg, via Wikimedia Commons

[3]

The time a skydiver spends between leaving the aircraft and opening a parachute is often called the “free fall” time.  During a recreational skydive the “free fall” time is about one minute. The current record “free fall” time of about 5 minutes was set by Alan Eustace in 2014 when he fell from an altitude of more than 135,000 feet. According to the  Paragon Space Development Corporation, “Eustace reached top speeds of over 800 miles per hour. He was going so fast that his body broke the sound barrier, creating a sonic boom that could be heard on the ground.” The jump broke the previous record of 127,852 feet set by Felix Baumgartner in 2012. The 2012 jump was sponsored by GoPro cameras and the video has a much higher production value than the more recent 2014 jump:

Thumbnail for the embedded element "GoPro: Red Bull Stratos - The Full Story"

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/bodyphysics/?p=1010

Physics Free Fall

Now that we have introduced the skydiver’s use of the term free fall, we need to recognize that physics uses the term free fall in a completely different way, so we will need to be careful to avoid confusion. In physics, and in this book, we use the term free fall to describe the motion of an object when gravity is the only force acting on the object, or any other forces are small enough compared to gravity that we can ignore them without introducing too much error. Skydivers experience significant air resistance, so they are not actually in free fall.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=1010


  1. "Preventing falls and fall-related injuries in health care facilities" by Sentinel Event Alert, The Joint Commission↵
  2. Majorkev at English Wikipedia [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons ↵
  3. "Skydive Miami" by By Norcal21jg, from Wikimedia Commons is in the Public Domain↵

Annotate

Next Chapter
Drag Forces on the Body
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org