Skip to main content

Body Physics: Motion to Metabolism: Jumping

Body Physics: Motion to Metabolism
Jumping
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

80

Jumping

Work-Energy Principle

How do we calculate the total work when more than one force acts on an object as it moves, so that each force is doing work? What if the forces point in opposite directions so one does positive work and the other does negative work? In this case we calculate the net work done by each force and add them up (keeping negative works as negative) to get the net work. Alternatively, add up the forces, including directions, to find the size and direction of the net force and then multiply by the distance over which the net force is applied to get the net work.  Either way will give you the same answer, which will be the net work. The net work tells us how much energy is transferred into or out of the kinetic energy, causing a change in kinetic energy (\Delta KE). Everything we have discussed so far can be summed up by the work-energy principle: The change in kinetic energy of a system is equal to the net work on the system, or  written as an equation:

(1)   \begin{equation*} W_{net} = \Delta KE \end{equation*}

Alternatively,

(2)   \begin{equation*} W_{net} = \frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2 \end{equation*}

or in terms of the net force:

(3)   \begin{equation*} F_{net, ave}dcos\theta = \frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2 \end{equation*}

Everyday Examples: Jumping

During a jump a person’s legs might apply a force of 1200 N upward on their center of mass while the center of mass moves 0.3 m upward. Let’s figure out what their launch velocity and hang-time will be if the person has a weight of 825 N.

First we calculate the work done by their legs.

    \begin{equation*} W_L = (1200\,\bold{N})(0.3 \,\bold{m})cos(0^{\circ}) = 360 \,\bold{J} \end{equation*}

Gravity was acting on them during the launch phase as well, so we need to calculate the work done by gravity, which acts in the opposite direction to motion ($\theta = 180):

    \begin{equation*} W_g = (825\,\bold{N})(0.3 \,\bold{m})cos(180^{\circ}) = -247.5 \,\bold{J} \end{equation*}

Adding up the works to get the net work:

    \begin{equation*} W_net = -247.5 \,\bold{J} + 360 \,\bold{J} = 112.5 \,\bold{J} \end{equation*}

The work-energy principle tells us to set the change in kinetic energy equal to the net work. We will keep in mind that they started at rest, so the initial kinetic energy was zero.

    \begin{equation*} 112.5 \,\bold{J} = \frac{1}{2}mv_f^2 - 0 \end{equation*}

We isolate the final velocity at the end of the launch phase (as the person leaves the ground)

    \begin{equation*} \frac{2 ( 112.5 \,\bold{J})}{m} = v_f^2 \end{equation*}

We can see that we need the persons mass. We just need to divide their weight by g = 9.8 m/s/s to find it:

    \begin{equation*} m = \frac{825\,\bold{N}}{9.8\,\bold{m/s}} = 84.2 \,\bold{kg} \end{equation*}

We insert the mass:

    \begin{equation*} \frac{2 ( 112.5 \,\bold{J})}{84.2 \,\bold{kg}} = v_f^2 \end{equation*}

Finally we take the square root of the result to find the final velocity:

    \begin{equation*} v_f = \sqrt{\frac{2 ( 112.5 \,\bold{J})}{84.2 \,\bold{kg}}} = 1.6 \,\bold{m/s} \end{equation*}

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=2365

Annotate

Next Chapter
Surviving a Fall
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org