Skip to main content

Body Physics: Motion to Metabolism: Quantitative Motion Analysis

Body Physics: Motion to Metabolism
Quantitative Motion Analysis
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

65

Quantitative Motion Analysis

Kinematics

We now know to find average acceleration of an object by finding the net force and applying Newton’s Second Law. Once the acceleration is known, we can figure out how the velocity and position change over time. That process is known as kinematics and the equations we use to relate acceleration, velocity, position, and time are known as the kinematic equations. Let’s take a look at a few of them one-by-one.

Based on our definition of acceleration as the rate of change of the velocity we can calculate the change in velocity during a time interval as the acceleration multiplied by the length of the time interval:

(1)   \begin{equation*} \bold{\Delta v} = \bold{a}\Delta t \end{equation*}

Reinforcement Exercises

If a person has an acceleration of 5.0 m/s/s, how much does their velocity change in 2.0 s?

We can find the current velocity by adding the expression for change in velocity to the initial velocity:

(2)   \begin{equation*} \bold{v_f} = \bold{v_i} + \bold{a}\Delta t \end{equation*}

Reinforcement Exercises

If  the person in the previous exercise has an initial velocity of  2.0 m/s, what is their new velocity after the 2.0 s?

We can calculate the average velocity during the interval as the average of the initial and final velocities:

(3)   \begin{equation*} \bold{v_{ave}} =  \frac{\bold{v_i} + \bold{v_f}}{2} \end{equation*}

Reinforcement Exercises

What is the average velocity of the person in the previous exercise?

Using the definition of velocity as the rate of change of position we can calculate the change in position during a time interval as the average velocity during the interval multiplied by the length of the time interval.

(4)   \begin{equation*} \bold{\Delta x} =  \bold{v_{ave}}\Delta t \end{equation*}

Reinforcement Exercises

What is the change in position of the person in the previous exercises?

Adding the above expression for change in position to the initial position allows us to calculate the final position after any time:

(5)   \begin{equation*} \bold{x_f} = \bold{x_i} +\bold{v_{ave}}\Delta t \end{equation*}

Reinforcement Exercises

If  the person in the previous exercises started at a position of 4 m/s, what is their final position?

We can combine everything the from previous steps into a single equation that can save some time on some problems. It looks like this:

(6)   \begin{equation*} \bold{x_f} = \bold{x_i} +  \bold{v_i}\Delta t + \frac{1}{2}\bold{a}(\Delta t)^2 \end{equation*}

To get the above equation we used equation (3) to replace the average velocity with the expression for average velocity:

(7)   \begin{equation*} \bold{x_f} = \bold{x_i} +  \frac{\bold{v_i} + \bold{v_f}}{2}\Delta t \end{equation*}

Using equation (2) we can then replace the final velocity:

(8)   \begin{equation*} \bold{x_f} = \bold{x_i} +  \frac{(\bold{v_i} + \bold{v_i}+ \bold{a}\Delta t)}{2}\Delta t \end{equation*}

After some simplification we are there:

(9)   \begin{equation*} \bold{x_f} = \bold{x_i} +  \bold{v_i}\Delta t + \frac{1}{2}\bold{a}(\Delta t)^2 \end{equation*}

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=1918

Everyday Example

After leaving a friend’s 3rd story apartment you get to your car and realize that you have left your keys in the apartment. You call your friend and ask them to drop the keys out the window to you. We want to figure out how long it will take the keys to reach you and how fast they will be falling when they get there. The third story window is about 35 ft off the ground. We can convert to meters and use our previously stated acceleration for falling objects, g =9.8 m/s/s, or we can stick with feet and use g = 32 ft/s/s, so let’s do that.

Starting from our last equation from the work we did above:

    \begin{equation*} \bold{x_f} = \bold{x_i}+  \bold{v_i}\Delta t + \frac{1}{2}\bold{a}(\Delta t)^2 \end{equation*}

We choose upward as our positive direction and the ground as our origin, therefore our initial position is 35 ft and our final position is 0 ft. The keys are dropped from rest, so our initial velocity is zero. Putting the zeros into the equation above we have:

    \begin{equation*} 0= \bold{x_i} +  0 + \frac{1}{2}\bold{a}(\Delta t)^2 \end{equation*}

Now we can isolate the time variable:

(10)   \begin{equation*} t^2 =  \frac{-2\bold{x_i}}{\bold{a}} \end{equation*}

Take the square root to find the time

(11)   \begin{equation*} t =  \sqrt{\frac{-2\bold{x_i}}{\bold{a}}} \end{equation*}

Entering our known values we can find the fall time. We will use -32 ft/s/s for our acceleration because the acceleration due to gravity is downward and we have chosen upward as the positive direction.

(12)   \begin{equation*} t =  \sqrt{\frac{-2(35\,\bold{ft})}{-32\,\bold{ft/s/s}}} = 1.479 \,\bold{s} = 1.5 \,\bold{s} \end{equation*}

Lastly, we can find the velocity of the keys using equation (2) above

(13)   \begin{equation*} \bold{v_f} = \bold{v_i} + \bold{a}\Delta t = 0 + (32\,\bold{ft/s/s})(1.479\,\bold{s}) = 47 \,\bold{ft/s} \end{equation*}

The final velocity of 47 ft/s is about 32 MPH. If the keys smack your hand at that speed, it will hurt. There are techniques you could use to prevent injury in such a situation, and those techniques will be the topic of the next Unit.

In solving the previous example we found an equation to calculate the time required for an object with a certain acceleration to reach a final position of zero when starting from a known initial position. Among other things, this allows us to calculate the time required to fall to the ground from a certain starting height. That equation will come up often, so lets write it out here:

(14)   \begin{equation*} t =  \sqrt{\frac{-2\bold{x_i}}{\bold{a}}} \end{equation*}

If acceleration is set to  -9.8 m/s/s (or -g), then this equation calculates the free-fall time for a choice of negative as the downward direction.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=1918

The Jerk

We have learned in the last few chapters that our example skydiver has an initial acceleration of 9.8 m/s/s and an acceleration of zero after reaching terminal velocity, so between those points the acceleration must be changing.  The rate of change of the acceleration is known as the jerk, but we won’t deal with jerk in this textbook and will instead focus on motion with constant acceleration. However, if we really want to analyze our skydiver’s full motion, we will need to somehow deal with a changing acceleration. That’s what the next chapter is all about.

Annotate

Next Chapter
Falling Injuries
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org