Skip to main content

Body Physics: Motion to Metabolism: Safety Technology

Body Physics: Motion to Metabolism
Safety Technology
    • Notifications
    • Privacy
  • Project HomeThe Social World of Health Professionals
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Table Of Contents
  6. Why Use Body Physics?
  7. When to use Body Physics
  8. How to use Body Physics
  9. Tasks Remaining and Coming Improvements
  10. Who Created Body Physics?
  11. Unit 1: Purpose and Preparation
    1. The Body's Purpose
    2. The Purpose of This Texbook
    3. Prepare to Overcome Barriers
    4. Prepare to Struggle
    5. Prepare Your Expectations
    6. Prepare Your Strategy
    7. Prepare Your Schedule
    8. Unit 1 Review
    9. Unit 1 Practice and Assessment
  12. Unit 2: Measuring the Body
    1. Jolene's Migraines
    2. The Scientific Process
    3. Scientific Models
    4. Measuring Heart Rate
    5. Heart Beats Per Lifetime
    6. Human Dimensions
    7. Body Surface Area
    8. Dosage Calculations
    9. Unit 2 Review
    10. Unit 2 Practice and Assessment
  13. Unit 3: Errors in Body Composition Measurement
    1. Body Mass Index
    2. The Skinfold Method
    3. Pupillary Distance Self-Measurement
    4. Working with Uncertainties
    5. Other Methods of Reporting Uncertainty*
    6. Unit 3 Review
    7. Unit 3 Practice and Assessment
  14. Unit 4: Better Body Composition Measurement
    1. Body Density
    2. Body Volume by Displacement
    3. Body Weight
    4. Measuring Body Weight
    5. Body Density from Displacement and Weight
    6. Under Water Weight
    7. Hydrostatic Weighing
    8. Unit 4 Review
    9. Unit 4 Practice and Assessment
  15. Unit 5: Maintaining Balance
    1. Balance
    2. Center of Gravity
    3. Supporting the Body
    4. Slipping
    5. Friction in Joints
    6. Tipping
    7. Human Stability
    8. Tripping
    9. Types of Stability
    10. The Anti-Gravity Lean
    11. Unit 5 Review
    12. Unit 5 Practice and Assessment
  16. Unit 6: Strength and Elasticity of the Body
    1. Body Levers
    2. Forces in the Elbow Joint
    3. Ultimate Strength of the Human Femur
    4. Elasticity of the Body
    5. Deformation of Tissues
    6. Brittle Bones
    7. Equilibrium Torque and Tension in the Bicep*
    8. Alternative Method for Calculating Torque and Tension*
    9. Unit 6 Review
    10. Unit 6 Practice and Assessment
  17. Unit 7: The Body in Motion
    1. Falling
    2. Drag Forces on the Body
    3. Physical Model for Terminal Velocity
    4. Analyzing Motion
    5. Accelerated Motion
    6. Accelerating the Body
    7. Graphing Motion
    8. Quantitative Motion Analysis
    9. Falling Injuries
    10. Numerical Simulation of Skydiving Motion*
    11. Unit 7 Review
    12. Unit 7 Practice and Assessment
  18. Unit 8: Locomotion
    1. Overcoming Inertia
    2. Locomotion
    3. Locomotion Injuries
    4. Collisions
    5. Explosions, Jets, and Rockets
    6. Safety Technology
    7. Crumple Zones
    8. Unit 8 Review
    9. Unit 8 Practice and Assessment
  19. Unit 9: Powering the Body
    1. Doing Work
    2. Jumping
    3. Surviving a Fall
    4. Powering the Body
    5. Efficiency of the Human Body
    6. Weightlessness*
    7. Comparing Work-Energy and Energy Conservation*
    8. Unit 9 Review
    9. Unit 9 Practice and Assessment
  20. Unit 10: Body Heat and The Fight for Life
    1. Homeostasis, Hypothermia, and Heatstroke
    2. Measuring Body Temperature
    3. Preventing Hypothermia
    4. Cotton Kills
    5. Wind-Chill Factor
    6. Space Blankets
    7. Thermal Radiation Spectra
    8. Cold Weather Survival Time
    9. Preventing Hyperthermia
    10. Heat Death
    11. Unit 10 Review
    12. Unit 10 Practice and Assessment Exercises
  21. Laboratory Activities
    1. Unit 2/3 Lab: Testing a Terminal Speed Hypothesis
    2. Unit 4 Lab: Hydrostatic Weighing
    3. Unit 5 Lab: Friction Forces and Equilibrium
    4. Unit 6 Lab: Elastic Modulus and Ultimate Strength
    5. Unit 7 Lab: Accelerated Motion
    6. Unit 8 Lab: Collisions
    7. Unit 9 Lab: Energy in Explosions
    8. Unit 10 Lab: Mechanisms of Heat Transfer
  22. Design-Build-Test Projects
    1. Scale Biophysical Dead-lift Model
    2. Biophysical Model of the Arm
    3. Mars Lander
  23. Glossary

75

Safety Technology

Bounce is Bad

If the skull impacts a hard surface, but neither the skull or surface are significantly deformed, then the skull will bounce back. This type of collision is not perfectly inelastic because the skull did not stick to the surface. In this case the relative impact speed between the still-forward moving brain and the backward moving skull is nearly twice what it would have been if the skull had simply stopped.

A human skull moving forward and impacting a solid wall. A cutaway of the skull shows the brain inside moving forward, impacting the front of the skull, then moving backward and impacting the back of the skull. Injured areas on the front (frontal lobe) and rear (occipital lobe) of the brain are highlighted.
The alternating accelerations of the skull and the inertia of the brain combine to cause impacts on opposing sides of the brain during a coup contrecoup injury. Image credit: Contrecoup by Patrick J. Lynch, medical illustrator via Wikimedia Commons

[1]

After the bounce, as the neck causes the skull to slow down on the way backward, the inertia of the brain may lead to a second impact on the back of the brain, as illustrated in the previous image. Aside from an additional brain tissue injury, the combined swelling of the two opposed injuries will put amplify the pressure on the brain and increase the likelihood of permanent injury. This type of injury is known as a Coup Countrecoup , or translated from French by Google Translate, blow, counter blow.

Air Bags

Everyday Example: Airbags

Check out this video of crash-testing with and without airbags.

https://youtu.be/NACA1W2A5Wk

During the crash the driver’s head starts out with the same velocity  as the car. The airbag increases the time it takes for the head to come to rest, which will decrease the force on the head. In order make sure the head does actually come to rest instead of bouncing the airbag has vents that allow air to be pushed out during impact so  it deflates instead of staying completely full and keeping its shape.

The impulse-momentum theorem introduced in the previous chapter will help us to analyze technology designed to minimize the forces on your the body:

(1)   \begin{equation*} \bold{ p_f}-\bold{p_i}  =\Delta t \bold{F_{ave}} \end{equation*}

If we divide over the time, we see that there are two options for reducing the force on the body during a collision; you can maximize collision time, or minimize the change in momentum, or both:

(2)   \begin{equation*} \frac{\bold{p_f}-\bold{p_i}}{\Delta t }  =\bold{F_{ave}} \end{equation*}

Through our analysis of locomotion, falling, and landing we have already examined strategies for increasing the collision time, but how do we actually reduce change in momentum you experience during a collision? Prevent the bounce! Let’s examine why the bounce is bad using an the airbag example.  First we write the momentum of the head in terms of its mass and velocity.

(3)   \begin{equation*} \frac{m\bold{v_f}-m\bold{v_i}}{\Delta t }  =\bold{F_{ave}} \end{equation*}

If the collision is perfectly inelastic so the head does not bounce at all, then final velocity is zero:

(4)   \begin{equation*} -m\bold{v_i}}{\Delta t }  =\bold{F_{ave}} \end{equation*}

We see that the force on the head depends on the head mass, the initial velocity, and the collision time.

If instead the head bounces back at the same speed it went in (image the airbag was a rubber ball), then the final velocity is just equal and opposite (negative) the initial velocity:

(5)   \begin{equation*} \frac{m(-\bold{v_i})-m\bold{v_i}}{\Delta t }  =\bold{F_{ave}} \end{equation*}

The left side can be combined:

(6)   \begin{equation*} \frac{-2m\bold{v_i}}{\Delta t }  =\bold{F_{ave}} \end{equation*}

That is twice the force compared to when the head just came to rest! If the head were to bounce back, but not at full speed, then the force would still be greater than the perfectly inelastic case, but not twice as great.

Reinforcement Exercises

An interactive or media element has been excluded from this version of the text. You can view it online here:
https://openoregon.pressbooks.pub/bodyphysics/?p=2071

  1. Contrecoup by Patrick J. Lynch, medical illustrator [CC BY 2.5 (https://creativecommons.org/licenses/by/2.5), GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons↵

Annotate

Next Chapter
Crumple Zones
PreviousNext
TBH...just interesting health-y books
Copyright © 2020 by Lawrence Davis. Body Physics: Motion to Metabolism by Lawrence Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org