Skip to main content

Introduction to Exercise Science for Fitness Professionals: FITT Principle

Introduction to Exercise Science for Fitness Professionals
FITT Principle
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Attribution and OER Revision Statement
  6. Chapter 1: Body Systems Review
    1. The Cardiovascular System
    2. The Nervous System
    3. Reflexes
    4. The Skeletal System
    5. Divisions of the Skeletal System
    6. Skeletal Muscle
    7. Divisions of the Skeletal Muscles
    8. Describing Motion and Movements
    9. Identify Anatomical Locations
  7. Chapter 2: Biomechanics and Human Movement
    1. The Basics of Biomechanics
    2. Inertia and Momentum
    3. Force
    4. Doing Work
    5. Body Levers
    6. Nervous System Control of Muscle Tension
    7. Muscle Tissue and Motion
  8. Chapter 3: Exercise Metabolism
    1. Introduction to Bioenergetics and Metabolism
    2. Overview of Metabolic Reactions
    3. Metabolic States of the Body
    4. The Cardiorespiratory System and Energy Production
    5. ATP in Living Systems
    6. Types of Muscle Fibers
    7. Exercise and Muscle Performance
    8. Nutrition, Performance, and Recovery
    9. Carbohydrate Metabolism
    10. Protein Metabolism
    11. Lipid Metabolism
  9. Chapter 4: Fitness Principles
    1. What are Physical Activity and Exercise?
    2. The Physical Activity Guidelines for Americans
    3. Components of Health-Related Fitness
    4. Principles of Adaptation and Stress
    5. FITT Principle
    6. Rest, Recovery, and Periodization
    7. Reversibility
    8. Training Volume
    9. Individual Differences
    10. Creating a Successful Fitness Plan
    11. Additional Safety Concerns
    12. Test Your Knowledge
  10. Chapter 5: Flexibility Training Principles
    1. What is Flexibility?
    2. Benefits of Flexibility and Stretching
    3. Improving Range of Motion
    4. Improving Flexibility
    5. Creating an Effective Stretching Program
    6. Assessing Your Flexibility
    7. Test Your Knowledge
  11. Chapter 6: Cardiorespiratory Training Principles
    1. What are the Cardiovascular and Respiratory Systems?
    2. Introduction: The Cardiovascular System
    3. Introduction: The Respiratory System
    4. The Process of Breathing and Respiratory Function
    5. Modifications to Breathing
    6. Changes in the CR System
    7. Measuring Heart Rate
    8. Measuring Intensity
    9. Cardiorespiratory Fitness Assessment
    10. Test Your Knowledge
  12. Chapter 7: Core and Balance Training Principles
    1. Lumbar Spine
    2. Abdomen
    3. The Pelvic Girdle
    4. Creating Movement at the Hip
    5. Balance
    6. Center of Gravity
    7. Supporting the Body
    8. Friction in Joints
    9. Human Stability
    10. Guidelines for Core and Balance Training
  13. Chapter 8: Plyometrics, Speed, Agility, and Quickness Training Principles
    1. Plyometric Exercises
    2. Variables of Plyometric Training
    3. Progressing a Plyometric Program
    4. Speed, Agility, and Quickness
    5. Speed
    6. Agility
    7. Quickness
  14. Chapter 9: Resistance Training Principles
    1. Resistance Exercise Programming
    2. Exercise Order
    3. Types of Resistance Training
    4. Basics of Form during Resistance Training
    5. Resistance Training Systems
    6. Resistance Training Conclusion
    7. Test Your Knowledge
  15. References
  16. Glossary
  17. MARC Record

32

FITT Principle

Dawn Markell and Diane Peterson

In exercise, the amount of stress placed on the body can be controlled by four variables: Frequency, Intensity, Time (duration), and Type, better known as FITT. The FITT principle, as outlined by the American College of Sports Medicine (ACSM) falls under the larger principle of overload.

Frequency and Time

Each variable can be used independently or in combination with other variables to impose new stress and stimulate adaptation. Such is the case for frequency and time.

Frequency relates to how often exercises are performed over a period of time. In most cases, the number of walking or jogging sessions would be determined over the course of a week. A beginner may determine that 2–3 exercise sessions a week are sufficient enough to stimulate improvements. On the other hand, a seasoned veteran may find that 2–3 days is not enough to adequately stress the system. According to the overload principle, as fitness improves, so must the stress to ensure continued gains and to avoid plateauing.

The duration of exercise, or time, also contributes to the amount of stress experienced during a workout. Certainly, a 30-minute brisk walk is less stressful on the body than a 4-hour marathon.

Although independent of one another, frequency and time are often combined into the blanket term, volume. The idea is that volume more accurately reflects the amount of stress experienced. This can be connected to the progression principle. For example, when attempting to create a jogging plan, you may organize 2 weeks like this:

  • Week 1: three days a week at 30 minutes per session
  • Week 2: four days a week at 45 minutes per session

At first glance, this might appear to be a good progression of frequency and time. However, when calculated in terms of volume, the aggressive nature of the progression is revealed. In week 1, three days at 30 minutes per session equals 90 minutes of total exercise. In week two, this amount was doubled with four days at 45 minutes, equaling 180 minutes of total exercise. Doing too much, too soon, will almost certainly lead to burnout, severe fatigue, and injury. The progression principle relates to an optimal overload of the body by finding an amount that will drive adaptation without compromising safety.

Intensity

Intensity, the degree of difficulty at which the exercise is carried out, is the most important variable of FITT. More than any of the other components, intensity drives adaptation. Because of its importance, it is imperative for those beginning a fitness program to quantify intensity, as opposed to estimating it as hard, easy, or somewhere in between. Not only will this numeric value provide a better understanding of the effort level during the exercise session, but it will also help in designing sessions that accommodate individual goals.

How then can intensity be measured? Heart rate is one of the best ways to measure a person’s effort level for cardiorespiratory fitness. Using a percentage of maximum lifting capacity would be the measure used for resistance training.

Type of Exercise

Simply put, the type of exercise performed should reflect a person’s goals. In cardiorespiratory fitness, the objective of the exercise is to stimulate the cardiorespiratory system. Other activities that accomplish the same objective include swimming, biking, dancing, cross country skiing, aerobic classes, and much more. As such, these activities can be used to build lung capacity and improve cellular and heart function.


Dawn Markell & Diane Peterson, Health and Fitness for Life. MHCC Library Press. Sept 4, 2019. https://mhcc.pressbooks.pub/hpe295

Annotate

Next Chapter
Rest, Recovery, and Periodization
PreviousNext
Kinesiology, Nutrition, and Fitness

Copyright © 2021

                                by Amanda Shelton

            Introduction to Exercise Science for Fitness Professionals by Amanda Shelton is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org