Skip to main content

Introduction to Exercise Science for Fitness Professionals: Force

Introduction to Exercise Science for Fitness Professionals
Force
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Attribution and OER Revision Statement
  6. Chapter 1: Body Systems Review
    1. The Cardiovascular System
    2. The Nervous System
    3. Reflexes
    4. The Skeletal System
    5. Divisions of the Skeletal System
    6. Skeletal Muscle
    7. Divisions of the Skeletal Muscles
    8. Describing Motion and Movements
    9. Identify Anatomical Locations
  7. Chapter 2: Biomechanics and Human Movement
    1. The Basics of Biomechanics
    2. Inertia and Momentum
    3. Force
    4. Doing Work
    5. Body Levers
    6. Nervous System Control of Muscle Tension
    7. Muscle Tissue and Motion
  8. Chapter 3: Exercise Metabolism
    1. Introduction to Bioenergetics and Metabolism
    2. Overview of Metabolic Reactions
    3. Metabolic States of the Body
    4. The Cardiorespiratory System and Energy Production
    5. ATP in Living Systems
    6. Types of Muscle Fibers
    7. Exercise and Muscle Performance
    8. Nutrition, Performance, and Recovery
    9. Carbohydrate Metabolism
    10. Protein Metabolism
    11. Lipid Metabolism
  9. Chapter 4: Fitness Principles
    1. What are Physical Activity and Exercise?
    2. The Physical Activity Guidelines for Americans
    3. Components of Health-Related Fitness
    4. Principles of Adaptation and Stress
    5. FITT Principle
    6. Rest, Recovery, and Periodization
    7. Reversibility
    8. Training Volume
    9. Individual Differences
    10. Creating a Successful Fitness Plan
    11. Additional Safety Concerns
    12. Test Your Knowledge
  10. Chapter 5: Flexibility Training Principles
    1. What is Flexibility?
    2. Benefits of Flexibility and Stretching
    3. Improving Range of Motion
    4. Improving Flexibility
    5. Creating an Effective Stretching Program
    6. Assessing Your Flexibility
    7. Test Your Knowledge
  11. Chapter 6: Cardiorespiratory Training Principles
    1. What are the Cardiovascular and Respiratory Systems?
    2. Introduction: The Cardiovascular System
    3. Introduction: The Respiratory System
    4. The Process of Breathing and Respiratory Function
    5. Modifications to Breathing
    6. Changes in the CR System
    7. Measuring Heart Rate
    8. Measuring Intensity
    9. Cardiorespiratory Fitness Assessment
    10. Test Your Knowledge
  12. Chapter 7: Core and Balance Training Principles
    1. Lumbar Spine
    2. Abdomen
    3. The Pelvic Girdle
    4. Creating Movement at the Hip
    5. Balance
    6. Center of Gravity
    7. Supporting the Body
    8. Friction in Joints
    9. Human Stability
    10. Guidelines for Core and Balance Training
  13. Chapter 8: Plyometrics, Speed, Agility, and Quickness Training Principles
    1. Plyometric Exercises
    2. Variables of Plyometric Training
    3. Progressing a Plyometric Program
    4. Speed, Agility, and Quickness
    5. Speed
    6. Agility
    7. Quickness
  14. Chapter 9: Resistance Training Principles
    1. Resistance Exercise Programming
    2. Exercise Order
    3. Types of Resistance Training
    4. Basics of Form during Resistance Training
    5. Resistance Training Systems
    6. Resistance Training Conclusion
    7. Test Your Knowledge
  15. References
  16. Glossary
  17. MARC Record

12

Force

Julio Gea-Benacloche and Amanda Shelton

What is Force?2

One simple way to think about a force is to identify it as some type of external influence on an object. The way that external factor influence the object can have a multitude of variables that influence it (friction, gravity, speed, velocity, direction, acceleration, mass, etc.) but at its core it remains as some type of external influence on an object. We measure force through the unit of measure of the Newton (N).

Newton’s Laws of Motion2

Most people have heard of Sir Isaac Newton, the founder of calculus, and many have heard of his Laws of Motion – but what are they again?

  1. Newton’s First Law: the law of inertia
    • An object at rest will stay at rest and an object in motion will stay in motion (at a constant velocity), unless acted upon by an external force.
  2. Newton’s Second Law: F = ma
    • A force acting on a body with mass will produce and acceleration proportional to that force.
    • In this equation: F = force; m = mass; and a = acceleration
  3. Newton’s Third Law: the law of action and reaction
    • For every action, there is an equal and opposite reaction.

Mechanical Energy2

One way that Newton’s Third Law can be applied in action is through forces derived from potential energy. The easy way to think about potential energy is to think of it as a spring. When you change the length of the spring you create what’s called potential energy. Whether you lengthen or shorten the spring you are changing its position – it wants to return to it’s natural state (the original position) and once you release the spring from the held position, that release of positional energy creates a reaction to return the spring to that natural state by converting that potential energy into kinetic energy, which is what helps to create movement.

We can also think about potential energy as a function of gravity. This similarly would be impacted by the object position and the potential for change as it changes position down a hill or around an access. If we come back to the human body and creating movement, we can think about how we can create potential energy through the change of position of our body (or a specific body part).

Human Movement, Potential Energy, and Kinetic Energy

Let’s create some kinetic and potential energy. Take your hand and lift it up over your head. 

  • How did you move your hand up over your head? You created kinetic energy through muscle action (which will get into in a later section).
  • Now that your hand is over your head – what is keeping it there?
  • What forces are acting on your arm to keep your hand over your head? Gravity? The muscles in your shoulder, upper arm, elbow, and forearm?
  • Does your arm contain potential energy?
  • How could you convert that potential energy into kinetic energy?

As we participate in various body movements, we are constantly going through a conversion of mechanical energy between potential and kinetic energy along with other types of energy like elastic energy, chemical energy, and thermal energy.

Elastic energy is often described as a potential energy function (as an example, think of our spring analogy from earlier) and is included within the system of our mechanical energy. The elasticity of a body creates an energy conversion on a macroscopic level (large scale). This can also be thought of in sport occurring outside of the body through something like a pole vault.

The elasticity (via elastic energy) of the pole itself, in relation to the mass of the person on one end, acceleration of the person, gravity, and its deformation as its positioned against a stop before the jump creates potential energy which converts to kinetic energy as a function of mechanical energy as a system.


Gea-Banacloche, J. (2019). University Physics I: Classical Mechanics. Open Educational Resources. Retrieved from https://scholarworks.uark.edu/oer/3

Annotate

Next Chapter
Doing Work
PreviousNext
Kinesiology, Nutrition, and Fitness

Copyright © 2021

                                by Amanda Shelton

            Introduction to Exercise Science for Fitness Professionals by Amanda Shelton is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org