Skip to main content

General Biology I: The Endoplasmic Reticulum

General Biology I
The Endoplasmic Reticulum
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. 1. Reference Information
    1. Presenting Data
    2. Using credible sources
    3. Citing your sources
    4. Writing for Science
  7. The Process of Science
    1. The Nature of Science
    2. Scientific Inquiry
    3. Hypothesis Testing
    4. Types of Data
    5. Basic and Applied Science
    6. Reporting Scientific Work
  8. Themes and Concepts of Biology
    1. Properties of Life
    2. Levels of Organization of Living Things
    3. The Diversity of Life
    4. Phylogenetic Trees
  9. Cell Structure and Function
    1. How Cells Are Studied
    2. Comparing Prokaryotic and Eukaryotic Cells
    3. The Plasma Membrane and The Cytoplasm
    4. Ribosomes
    5. The Cytoskeleton
    6. Flagella and Cilia
    7. The Endomembrane System
    8. The Nucleus
    9. The Endoplasmic Reticulum
    10. The Golgi Apparatus
    11. Vesicles and Vacuoles, Lysosomes, and Peroxisomes
    12. Mitochondria and Chloroplasts
    13. The Cell Wall
    14. Extracellular matrix and intercellular junctions
    15. Animal vs Plant cells
    16. The Production of a Protein
    17. Chapter Quiz
    18. Summary Table of Prokaryotic and Eukaryotic Cells and Functions
  10. Membranes and movement of molecules
    1. The Plasma Membrane
    2. Transport Across Membranes
    3. Passive Transport: Diffusion
    4. Passive Transport: Osmosis
    5. Active Transport
  11. Enzyme-catalyzed reactions
    1. Metabolic Pathways
    2. Energy
    3. Enzymes
    4. Changes in Enzyme Activity
    5. Feedback Inhibition in Metabolic Pathways
  12. How cells obtain energy
    1. Energy in Living Systems
    2. From Mouth to Molecule: Digestion
    3. Metabolism
    4. An overview of Cellular Respiration
    5. Aerobic Respiration: Glycolysis
    6. Aerobic Respiration: The Citric Acid Cycle
    7. Aerobic Respiration: Oxidative Phosphorylation
    8. Fermentation: an anaerobic process
    9. Metabolism of molecules other than glucose
    10. Anaerobic Cellular Respiration
  13. Photosynthesis
    1. Putting Photosynthesis into Context
    2. Light and Pigments
    3. Light Dependent Reactions
    4. The Calvin Cycle
    5. Photosynthesis in Prokaryotes

23

The Endoplasmic Reticulum

The endoplasmic reticulum (ER) (see Figure 1) is a series of interconnected membranous tubules that collectively modify proteins and synthesize lipids. However, these two functions are performed in separate areas of the endoplasmic reticulum: the rough endoplasmic reticulum and the smooth endoplasmic reticulum, respectively.

There is a hollow portion inside ER tubules that is called the lumen. The membrane of the ER, which is a phospholipid bilayer embedded with proteins, is continuous with the nuclear envelope.

The rough endoplasmic reticulum (RER) is so named because the ribosomes attached to its cytoplasmic surface give it a studded appearance when viewed through an electron microscope. The ribosomes synthesize proteins while attached to the ER, resulting in transfer of their newly synthesized proteins into the lumen of the RER where they undergo modifications such as folding or addition of sugars. The RER also makes phospholipids for cell membranes.

If the phospholipids or modified proteins are not destined to stay in the RER, they will be packaged within vesicles and transported from the RER by budding from the membrane (Figure 1). Since the RER is engaged in modifying proteins that will be secreted from the cell, it is abundant in cells that secrete proteins, such as the liver.

The smooth endoplasmic reticulum (SER) is continuous with the RER but has few or no ribosomes on its cytoplasmic surface (see Figure 1). The SER’s functions include synthesis of carbohydrates, lipids (including phospholipids), and steroid hormones; detoxification of medications and poisons; alcohol metabolism; and storage of calcium ions.

figure_03_13
Figure 1 The endomembrane system works to modify, package, and transport lipids and proteins. (credit: modification of work by Magnus Manske)

References

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

Text adapted from: OpenStax, Concepts of Biology. OpenStax CNX. May 18, 2016 http://cnx.org/contents/b3c1e1d2-839c-42b0-a314-e119a8aafbdd@9.10

Annotate

Next Chapter
The Golgi Apparatus
PreviousNext
Biology
Copyright © 2016 by Lisa Bartee and Christine Anderson. Mt Hood Community College Biology 101 by Lisa Bartee and Christine Anderson is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org