Skip to main content

Anatomy & Physiology 2e: 28.5 Adjustments of the Infant at Birth and Postnatal Stages

Anatomy & Physiology 2e
28.5 Adjustments of the Infant at Birth and Postnatal Stages
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Chapter 1. An Introduction to the Human Body
    1. 1.0 Introduction
    2. 1.1 How Structure Determines Function
    3. 1.2 Structural Organization of the Human Body
    4. 1.3 Homeostasis
    5. 1.4 Anatomical Terminology
    6. 1.5 Medical Imaging
  6. Chapter 2. The Chemical Level of Organization
    1. 2.0 Introduction
    2. 2.1 Elements and Atoms: The Building Blocks of Matter
    3. 2.2 Chemical Bonds
    4. 2.3 Chemical Reactions
    5. 2.4 Inorganic Compounds Essential to Human Functioning
    6. 2.5 Organic Compounds Essential to Human Functioning
  7. Chapter 3. The Cellular Level of Organization
    1. 3.0 Introduction
    2. 3.1 The Cell Membrane
    3. 3.2 The Cytoplasm and Cellular Organelles
    4. 3.3 The Nucleus and DNA Replication
    5. 3.4 Protein Synthesis
    6. 3.5 Cell Growth and Division
    7. 3.6 Cellular Differentiation
  8. Chapter 4. The Tissue Level of Organization
    1. 4.0 Introduction
    2. 4.1 Types of Tissues
    3. 4.2 Epithelial Tissue
    4. 4.3 Connective Tissue Supports and Protects
    5. 4.4 Muscle Tissue
    6. 4.5 Nervous Tissue
    7. 4.6 Tissue Injury and Aging
  9. Chapter 5. The Integumentary System
    1. 5.0 Introduction
    2. 5.1 Layers of the Skin
    3. 5.2 Accessory Structures of the Skin
    4. 5.3 Functions of the Integumentary System
    5. 5.4 Diseases, Disorders, and Injuries of the Integumentary System
  10. Chapter 6. Bone Tissue and the Skeletal System
    1. 6.0 Introduction
    2. 6.1 The Functions of the Skeletal System
    3. 6.2 Bone Classification
    4. 6.3 Bone Structure
    5. 6.4 Bone Formation and Development
    6. 6.5 Fractures: Bone Repair
    7. 6.6 Exercise, Nutrition, Hormones, and Bone Tissue
    8. 6.7 Calcium Homeostasis: Interactions of the Skeletal System and Other Organ Systems
  11. Chapter 7. Axial Skeleton
    1. 7.0 Introduction
    2. 7.1 Divisions of the Skeletal System
    3. 7.2 Bone Markings
    4. 7.3 The Skull
    5. 7.4 The Vertebral Column
    6. 7.5 The Thoracic Cage
    7. 7.6 Embryonic Development of the Axial Skeleton
  12. Chapter 8. The Appendicular Skeleton
    1. 8.0 Introduction
    2. 8.1 The Pectoral Girdle
    3. 8.2 Bones of the Upper Limb
    4. 8.3 The Pelvic Girdle and Pelvis
    5. 8.4 Bones of the Lower Limb
    6. 8.5 Development of the Appendicular Skeleton
  13. Chapter 9. Joints
    1. 9.0 Introduction
    2. 9.1 Classification of Joints
    3. 9.2 Fibrous Joints
    4. 9.3 Cartilaginous Joints
    5. 9.4 Synovial Joints
    6. 9.5 Types of Body Movements
    7. 9.6 Anatomy of Selected Synovial Joints
    8. 9.7 Development of Joints
  14. Chapter 10. Muscle Tissue
    1. 10.0 Introduction
    2. 10.1 Overview of Muscle Tissues
    3. 10.2 Skeletal Muscle
    4. 10.3 Muscle Fiber Excitation, Contraction, and Relaxation
    5. 10.4 Nervous System Control of Muscle Tension
    6. 10.5 Types of Muscle Fibers
    7. 10.6 Exercise and Muscle Performance
    8. 10.7 Smooth Muscle Tissue
    9. 10.8 Development and Regeneration of Muscle Tissue
  15. Chapter 11. The Muscular System
    1. 11.0 Introduction
    2. 11.1 Describe the roles of agonists, antagonists and synergists
    3. 11.2 Explain the organization of muscle fascicles and their role in generating force
    4. 11.3 Explain the criteria used to name skeletal muscles
    5. 11.4 Axial Muscles of the Head Neck and Back
    6. 11.5 Axial muscles of the abdominal wall and thorax
    7. 11.6 Muscles of the Pectoral Girdle and Upper Limbs
    8. 11.7 Appendicular Muscles of the Pelvic Girdle and Lower Limbs
  16. Chapter 12. The Nervous System and Nervous Tissue
    1. 12.0 Introduction
    2. 12.1 Structure and Function of the Nervous System
    3. 12.2 Nervous Tissue
    4. 12.3 The Function of Nervous Tissue
    5. 12.4 Communication Between Neurons
    6. 12.5 The Action Potential
  17. Chapter 13. The Peripheral Nervous System
    1. 13.0 Introduction
    2. 13.1 Sensory Receptors
    3. 13.2 Ganglia and Nerves
    4. 13.3 Spinal and Cranial Nerves
    5. 13.4 Relationship of the PNS to the Spinal Cord of the CNS
    6. 13.5 Ventral Horn Output and Reflexes
    7. 13.6 Testing the Spinal Nerves (Sensory and Motor Exams)
    8. 13.7 The Cranial Nerve Exam
  18. Chapter 14. The Central Nervous System
    1. 14.0 Introduction
    2. 14.1 Embryonic Development
    3. 14.2 Blood Flow the meninges and Cerebrospinal Fluid Production and Circulation
    4. 14.3 The Brain and Spinal Cord
    5. 14.4 The Spinal Cord
    6. 14.5 Sensory and Motor Pathways
  19. Chapter 15. The Special Senses
    1. 15.0 Introduction
    2. 15.1 Taste
    3. 15.2 Smell
    4. 15.3 Hearing
    5. 15.4 Equilibrium
    6. 15.5 Vision
  20. Chapter 16. The Autonomic Nervous System
    1. 16.0 Introduction
    2. 16.1 Divisions of the Autonomic Nervous System
    3. 16.2 Autonomic Reflexes and Homeostasis
    4. 16.3 Central Control
    5. 16.4 Drugs that Affect the Autonomic System
  21. Chapter 17. The Endocrine System
    1. 17.0 Introduction
    2. 17.1 An Overview of the Endocrine System
    3. 17.2 Hormones
    4. 17.3 The Pituitary Gland and Hypothalamus
    5. 17.4 The Thyroid Gland
    6. 17.5 The Parathyroid Glands
    7. 17.6 The Adrenal Glands
    8. 17.7 The Pineal Gland
    9. 17.8 Gonadal and Placental Hormones
    10. 17.9 The Pancreas
    11. 17.10 Organs with Secondary Endocrine Functions
    12. 17.11 Development and Aging of the Endocrine System
  22. Chapter 18. The Cardiovascular System: Blood
    1. 18.0 Introduction
    2. 18.1 Functions of Blood
    3. 18.2 Production of the Formed Elements
    4. 18.3 Erythrocytes
    5. 18.4 Leukocytes and Platelets
    6. 18.5 Hemostasis
    7. 18.6 Blood Typing
  23. Chapter 19. The Cardiovascular System: The Heart
    1. 19.0 Introduction
    2. 19.1 Heart Anatomy
    3. 19.2 Cardiac Muscle and Electrical Activity
    4. 19.3 Cardiac Cycle
    5. 19.4 Cardiac Physiology
    6. 19.5 Development of the Heart
  24. Chapter 20. The Cardiovascular System: Blood Vessels and Circulation
    1. 20.0 Introduction
    2. 20.1 Structure and Function of Blood Vessels
    3. 20.2 Blood Flow, Blood Pressure, and Resistance
    4. 20.3 Capillary Exchange
    5. 20.4 Homeostatic Regulation of the Vascular System
    6. 20.5 Circulatory Pathways
    7. 20.6 Development of Blood Vessels and Fetal Circulation
  25. Chapter 21. The Lymphatic and Immune System
    1. 21.0 Introduction
    2. 21.1 Anatomy of the Lymphatic and Immune Systems
    3. 21.2 Barrier Defenses and the Innate Immune Response
    4. 21.3 The Adaptive Immune Response: T lymphocytes and Their Functional Types
    5. 21.4 The Adaptive Immune Response: B-lymphocytes and Antibodies
    6. 21.5 The Immune Response against Pathogens
    7. 21.6 Diseases Associated with Depressed or Overactive Immune Responses
    8. 21.7 Transplantation and Cancer Immunology
  26. Chapter 22. The Respiratory System
    1. 22.0 Introduction
    2. 22.1 Organs and Structures of the Respiratory System
    3. 22.2 The Lungs
    4. 22.3 The Process of Breathing
    5. 22.4 Gas Exchange
    6. 22.5 Transport of Gases
    7. 22.6 Modifications in Respiratory Functions
    8. 22.7 Embryonic Development of the Respiratory System
  27. Chapter 23. The Digestive System
    1. 23.0 Introduction
    2. 23.1 Overview of the Digestive System
    3. 23.2 Digestive System Processes and Regulation
    4. 23.3 The Mouth, Pharynx, and Esophagus
    5. 23.4 The Stomach
    6. 23.5 Accessory Organs in Digestion: The Liver, Pancreas, and Gallbladder
    7. 23.6 The Small and Large Intestines
    8. 23.7 Chemical Digestion and Absorption: A Closer Look
  28. Chapter 24. Metabolism and Nutrition
    1. 24.0 Introduction
    2. 24.1 Overview of Metabolic Reactions
    3. 24.2 Carbohydrate Metabolism
    4. 24.3 Lipid Metabolism
    5. 24.4 Protein Metabolism
    6. 24.5 Metabolic States of the Body
    7. 24.6 Energy and Heat Balance
    8. 24.7 Nutrition and Diet
  29. Chapter 25. The Urinary System
    1. 25.0 Introduction
    2. 25.1 Internal and External Anatomy of the Kidney
    3. 25.2 Microscopic Anatomy of the Kidney: Anatomy of the Nephron
    4. 25.3 Physiology of Urine Formation: Overview
    5. 25.4 Physiology of Urine Formation: Glomerular Filtration
    6. 25.5 Physiology of Urine Formation: Tubular Reabsorption and Secretion
    7. 25.6 Physiology of Urine Formation: Medullary Concentration Gradient
    8. 25.7 Physiology of Urine Formation: Regulation of Fluid Volume and Composition
    9. 25.8 Urine Transport and Elimination
    10. 25.9 The Urinary System and Homeostasis
  30. Chapter 26. Fluid, Electrolyte, and Acid-Base Balance
    1. 26.0 Introduction
    2. 26.1 Body Fluids and Fluid Compartments
    3. 26.2 Water Balance
    4. 26.3 Electrolyte Balance
    5. 26.4 Acid-Base Balance
    6. 26.5 Disorders of Acid-Base Balance
  31. Chapter 27. The Sexual Systems
    1. 27.0 Introduction
    2. 27.1 Anatomy of Sexual Systems
    3. 27.2 Development of Sexual Anatomy
    4. 27.3 Physiology of the Female Sexual System
    5. 27.4 Physiology of the Male Sexual System
    6. 27.5 Physiology of Arousal and Orgasm
  32. Chapter 28. Development and Inheritance
    1. 28.0 Introduction
    2. 28.1 Fertilization
    3. 28.2 Embryonic Development
    4. 28.3 Fetal Development
    5. 28.4 Maternal Changes During Pregnancy, Labor, and Birth
    6. 28.5 Adjustments of the Infant at Birth and Postnatal Stages
    7. 28.6 Lactation
    8. 28.7 Patterns of Inheritance
  33. Creative Commons License
  34. Recommended Citations
  35. Versioning

28.5 Adjustments of the Infant at Birth and Postnatal Stages

Learning Objectives

By the end of this section, you will be able to:

  • Discuss the importance of an infant’s first breath
  • Explain the closing of the cardiac shunts
  • Describe thermoregulation in the newborn
  • Summarize the importance of intestinal flora in the newborn

From a fetal perspective, the process of birth is a crisis. In the womb, the fetus was snuggled in a soft, warm, dark, and quiet world. The placenta provided nutrition and oxygen continuously. Suddenly, the contractions of labor and vaginal childbirth forcibly squeeze the fetus through the birth canal, limiting oxygenated blood flow during contractions and shifting the skull bones to accommodate the small space. After birth, the newborn’s system must make drastic adjustments to a world that is colder, brighter, and louder, and where he or she will experience hunger and thirst. The neonatal period (neo- = “new”; -natal = “birth”) spans the first to the thirtieth day of life outside of the uterus.

Respiratory Adjustments

Although the fetus “practices” breathing by inhaling amniotic fluid in utero, there is no air in the uterus and thus no true opportunity to breathe. (There is also no need to breathe because the placenta supplies the fetus with all the oxygenated blood it needs.) During gestation, the partially collapsed lungs are filled with amniotic fluid and exhibit very little metabolic activity. Several factors stimulate newborns to take their first breath at birth. First, labor contractions temporarily constrict umbilical blood vessels, reducing oxygenated blood flow to the fetus and elevating carbon dioxide levels in the blood. High carbon dioxide levels cause acidosis and stimulate the respiratory center in the brain, triggering the newborn to take a breath.

The first breath typically is taken within 10 seconds of birth, after mucus is aspirated from the infant’s mouth and nose. The first breaths inflate the lungs to nearly full capacity and dramatically decrease lung pressure and resistance to blood flow, causing a major circulatory reconfiguration. Pulmonary alveoli open, and alveolar capillaries fill with blood. Amniotic fluid in the lungs drains or is absorbed, and the lungs immediately take over the task of the placenta, exchanging carbon dioxide for oxygen by the process of respiration.

Circulatory Adjustments

The process of clamping and cutting the umbilical cord collapses the umbilical blood vessels. In the absence of medical assistance, this occlusion would occur naturally within 20 minutes of birth because the Wharton’s jelly within the umbilical cord would swell in response to the lower temperature outside of the mother’s body, and the blood vessels would constrict. Natural occlusion has occurred when the umbilical cord is no longer pulsating. For the most part, the collapsed vessels atrophy and become fibrotic remnants, existing in the mature circulatory system as ligaments of the abdominal wall and liver. The ductus venosus degenerates to become the ligamentum venosum beneath the liver. Only the proximal sections of the two umbilical arteries remain functional, taking on the role of supplying blood to the upper part of the bladder (Figure 28.5.1).

This figure illustrates the circulatory system in a newborn. The left image in both panels shows the blood circulation before birth and the right image shows the blood circulation after birth.
Figure 28.5.1 – Neonatal Circulatory System: A newborn’s circulatory system reconfigures immediately after birth. The three fetal shunts have been closed permanently, facilitating blood flow to the liver and lungs.

The newborn’s first breath is vital to initiate the transition from the fetal to the neonatal circulatory pattern. Inflation of the lungs decreases blood pressure throughout the pulmonary system, as well as in the right atrium and ventricle. In response to this pressure change, the flow of blood temporarily reverses direction through the foramen ovale, moving from the left to the right atrium, and blocking the shunt with two flaps of tissue. Within 1 year, the tissue flaps usually fuse over the shunt, turning the foramen ovale into the fossa ovalis. The ductus arteriosus constricts as a result of increased oxygen concentration, and becomes the ligamentum arteriosum. Closing of the ductus arteriosus ensures that all blood pumped to the pulmonary circuit will be oxygenated by the newly functional neonatal lungs.

Thermoregulatory Adjustments

The fetus floats in warm amniotic fluid that is maintained at a temperature of approximately 98.6°F with very little fluctuation. Birth exposes newborns to a cooler environment in which they have to regulate their own body temperature. Newborns have a higher ratio of surface area to volume than adults. This means that their body has less volume throughout which to produce heat, and more surface area from which to lose heat. As a result, newborns produce heat more slowly and lose it more quickly. Newborns also have immature musculature that limits their ability to generate heat by shivering. Moreover, their nervous systems are underdeveloped, so they cannot quickly constrict superficial blood vessels in response to cold. They also have little subcutaneous fat for insulation. All these factors make it harder for newborns to maintain their body temperature.

Newborns, however, do have a special method for generating heat: nonshivering thermogenesis, which involves the breakdown of brown adipose tissue, or brown fat, which is distributed over the back, chest, and shoulders. Brown fat differs from the more familiar white fat in two ways:

  • It is highly vascularized. This allows for faster delivery of oxygen, which leads to faster cellular respiration.
  • It is packed with a special type of mitochondria that are able to engage in cellular respiration reactions that produce less ATP and more heat than standard cellular respiration reactions.

The breakdown of brown fat occurs automatically upon exposure to cold, so it is an important heat regulator in newborns. During fetal development, the placenta secretes inhibitors that prevent metabolism of brown adipose fat and promote its accumulation in preparation for birth.

Gastrointestinal and Urinary Adjustments

In adults, the gastrointestinal tract harbors bacterial flora—trillions of bacteria that aid in digestion, produce vitamins, and protect from the invasion or replication of pathogens. In stark contrast, the fetal intestine is sterile. The first consumption of breast milk or formula floods the neonatal gastrointestinal tract with beneficial bacteria that begin to establish the bacterial flora.

The fetal kidneys filter blood and produce urine, but the neonatal kidneys are still immature and inefficient at concentrating urine. Therefore, newborns produce very dilute urine, making it particularly important for infants to obtain sufficient fluids from breast milk or formula.

Homeostatic Imbalances

Homeostasis in the Newborn: Apgar Score

In the minutes following birth, a newborn must undergo dramatic systemic changes to be able to survive outside the womb. An obstetrician, midwife, or nurse can estimate how well a newborn is doing by obtaining an Apgar score. The Apgar score was introduced in 1952 by the anesthesiologist Dr. Virginia Apgar as a method to assess the effects on the newborn of anesthesia given to the laboring mother. Healthcare providers now use it to assess the general wellbeing of the newborn, whether or not analgesics or anesthetics were used.

Five criteria—skin color, heart rate, reflex, muscle tone, and respiration—are assessed, and each criterion is assigned a score of 0, 1, or 2. Scores are taken at 1 minute after birth and again at 5 minutes after birth. Each time that scores are taken, the five scores are added together. High scores (out of a possible 10) indicate the baby has made the transition from the womb well, whereas lower scores indicate that the baby may be in distress.

The technique for determining an Apgar score is quick and easy, painless for the newborn, and does not require any instruments except for a stethoscope. A convenient way to remember the five scoring criteria is to apply the mnemonic APGAR, for “appearance” (skin color), “pulse” (heart rate), “grimace” (reflex), “activity” (muscle tone), and “respiration.”

Of the five Apgar criteria, heart rate and respiration are the most critical. Poor scores for either of these measurements may indicate the need for immediate medical attention to resuscitate or stabilize the newborn. In general, any score lower than 7 at the 5-minute mark indicates that medical assistance may be needed. A total score below 5 indicates an emergency situation. Normally, a newborn will get an intermediate score of 1 for some of the Apgar criteria and will progress to a 2 by the 5-minute assessment. Scores of 8 or above are normal.

Chapter Review

The first breath a newborn takes at birth inflates the lungs and dramatically alters the circulatory system, closing the three shunts that directed oxygenated blood away from the lungs and liver during fetal life. Clamping and cutting the umbilical cord collapses the three umbilical blood vessels. The proximal umbilical arteries remain a part of the circulatory system, whereas the distal umbilical arteries and the umbilical vein become fibrotic. The newborn keeps warm by breaking down brown adipose tissue in the process of nonshivering thermogenesis. The first consumption of breast milk or formula floods the newborn’s sterile gastrointestinal tract with beneficial bacteria that eventually establish themselves as the bacterial flora, which aid in digestion.

Review Questions

An interactive H5P element has been excluded from this version of the text. You can view it online here:
https://open.oregonstate.education/aandp/?p=1304#h5p-615

An interactive H5P element has been excluded from this version of the text. You can view it online here:
https://open.oregonstate.education/aandp/?p=1304#h5p-616

An interactive H5P element has been excluded from this version of the text. You can view it online here:
https://open.oregonstate.education/aandp/?p=1304#h5p-617

Critical Thinking Questions

1. Describe how the newborn’s first breath alters the circulatory pattern.

2. Newborns are at much higher risk for dehydration than adults. Why?

Glossary

brown adipose tissue
highly vascularized fat tissue that is packed with mitochondria; these properties confer the ability to oxidize fatty acids to generate heat
nonshivering thermogenesis
process of breaking down brown adipose tissue to produce heat in the absence of a shivering response

Solutions

Answers for Critical Thinking Questions

  1. The first breath inflates the lungs, which drops blood pressure throughout the pulmonary system, as well as in the right atrium and ventricle. In response to this pressure change, the flow of blood temporarily reverses direction through the foramen ovale, moving from the left to the right atrium, and blocking the shunt with two flaps of tissue. The increased oxygen concentration also constricts the ductus arteriosus, ensuring that these shunts no longer prevent blood from reaching the lungs to be oxygenated.
  2. The newborn’s kidneys are immature and inefficient at concentrating urine. Therefore, newborns produce very dilute urine—in a sense, wasting fluid. This increases their risk for dehydration, and makes it critical that caregivers provide newborns with enough fluid, especially during bouts of vomiting or diarrhea.

Annotate

Next chapter
28.6 Lactation
PreviousNext
Anatomy and Physiology
Copyright © 2019 by Lindsay M. Biga, Sierra Dawson, Amy Harwell, Robin Hopkins, Joel Kaufmann, Mike LeMaster, Philip Matern, Katie Morrison-Graham, Devon Quick & Jon Runyeon

Anatomy & Physiology by Lindsay M. Biga, Sierra Dawson, Amy Harwell, Robin Hopkins, Joel Kaufmann, Mike LeMaster, Philip Matern, Katie Morrison-Graham, Devon Quick & Jon Runyeon is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org