Skip to main content

Organic Chemistry I: 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)

Organic Chemistry I
1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)

The Valence-Shell Electron-Pair Repulsion (VSEPR) theory helps us to understand and predict the geometry (shape) of molecules or ions. The theory is:

  • Electron pairs repel each other whether they are in chemical bonds or lone pairs.
  • Valence electron pairs are oriented to be as far apart as possible to minimize repulsions.

Based on this theory, depending on the number of electron pairs (both bonding pairs and lone pairs) around the central atom, a certain shape is adopted to minimize the repulsion between election pairs, as summarized in the table below:

Total number of electron  groups (electron pairs) around central atom

Geometry (Shape) of electron  groups (electron pairs)

2

linear
3trigonal planar
4tetrahedral
5trigonal bipyramidal
6octahedral

Table 1.1 Basic VSEPR Shapes

Notes:

  • For VSEPR purpose, the terms “shape” and “geometry” are interchangeable; “electron pair” and “electron group” are also interchangeable. 
  • Multiple bonds (double or triple bond) are regarded as one electron group for VSEPR purpose.

For species that do not have any lone pair electrons (LP), the geometry (shape) of the species is just the same as the geometry of the electron groups.

For the example of the PCl5 molecule, there are five electron groups on the central phosphorous, and they are all bonding pairs (BP). The shape of the electron groups is trigonal bipyramidal, and the shape of the PCl5 molecule is trigonal bipyramidal as well. The trigonal bipyramidal shape can be drawn on paper using solid and dashed wedges: the three bonds lie within the paper plane are shown as ordinary lines, the solid wedge represent a bond that points out of the paper plane, and the dashed wedge represent a bond that points behind the paper plane.

""
Figure1.5a Tigonal bipyramidal shape of PCl5 molecule

However, for the species that has lone pair electrons on the central atom, the shape of the species will be different to the shape of the electron groups. The reason is that even though the lone pairs occupy the space, there are no terminal atoms connected with lone pair, so the lone pair become “invisible” for the shape of the species.

For the example of the water (H2O) molecule, the central oxygen atom has two BPs and two LPs, and the shape of all the electron groups is tetrahedral. The shape of a water molecule is bent because only the atoms are counted towards the molecular shape, not the lone pair electrons.

""
Figure 1.5b Bent shape of H20 molecule

The VSEPR shapes can be rather diverse, considering the different numbers of total electron pairs together with the different numbers of lone pairs involved. The most common shapes are summarized in the following table (Table 1.2). To describe a certain shape, the specific name has to be used properly, and the bond angle information is important as well.

Total number of e-groupsGeometry (shape) ofall the electron groups# of Bonding Pairs (BP) and Lone Pairs (LP)Geometry (shape) of the speciesAngles (°)
2linear2BPlinear180
3trigonal planar3BPtrigonal planar120
2BP, 1LPbent<120
4tetrahedral4BPtetrahedral109.5
3BP, 1LPtrigonal pyramidal<109.5
2BP, 2LPbent<109.5
5trigonal bipyramidal5BPtrigonal bipyramidal120, 90, 180
4BP, 1LPsee-saw<120, 90, 180
3BP, 2LPT-shape90, 180
2BP, 3LPlinear180
6octahedral6BPoctahedral90, 180
5BP, 1LPsquare pyramidal90, 180
4BP, 2LPsquare planar90, 180

Table 1.2 Summary of specific VSEPR shapes

The website https://phet.colorado.edu/sims/html/molecule-shapes/latest/molecule-shapes_en.html   provides good resources for visualizing and practicing VSEPR topics.

We will see more applications of VSEPR in organic compounds in next section.

Annotate

Next Chapter
1.6 Valence Bond Theory and Hybridization
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org