Skip to main content

Organic Chemistry I: 9.2 Halogenation Reaction of Alkanes

Organic Chemistry I
9.2 Halogenation Reaction of Alkanes
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

9.2 Halogenation Reaction of Alkanes

When alkanes react with halogen (Cl2 or Br2), with heat or light, hydrogen atom of the alkane is replaced by halogen atom and alkyl halide is produced as product. This can be generally shown as:

""A specific example is:

""Such type of reaction can be called as substitution because hydrogen is substituted by halogen; can also be called halogenation because halogen is introduced into the product. For this book, both terms are used in this chapter, interchangeably.

The net reaction for halogenation seems straightforward, the mechanism is more complicated though, it go through multiple steps that include initiation, propagation and termination.

We will take the example of mono-chlorination of methane, for the discussion of reaction mechanism.

CH4  + Cl2  →  CH3Cl  + HCl

Mechanism for mono-chlorination of methane:

Initiation: Production of radical

""

With the energy provided from heat or light, chlorine molecule dissociates homolytically, each chlorine atom takes one of the bonding electrons, and two highly reactive chlorine radicals, Cl•, are produced.

Propagation: Formation of product and regeneration of radical

""

The propagation step involve two sub-steps. In the 1st step, the Cl• takes a hydrogen atom from the methane molecule (this is also called as hydrogen abstraction by Cl•), and C-H single bond breaks homolytically. A new σ bond is formed by Cl and H each donate one electron and HCl is produced as the side product. The CH3 radical, CH3•, the critical intermediate for the formation of product in next step, is formed as well.

In the 2nd step, the CH3• abstracts a chlorine atom to give final CH3Cl product, together with another Cl•. The regenerated Cl• can attack another methane molecule and cause the repetition of step 1, then step 2 is repeated, and so forth. Therefore the regeneration of the Cl• is particularly significant, it makes the propagation step self-repeat hundreds or thousands of time. The propagation step is therefore called the self-sustaining step, only small amount of Cl• is required at the beginning to promote the process.

Initiation and propagation are productive steps for the formation of product. This type of sequential, step-wise mechanism in which the earlier step generate the intermediate that cause the next step of the reaction to occur, is call the chain reaction.

The chain reaction will not continue forever though, because of the termination steps.

Termination: Consumption of radicals

""When two radicals in the reaction mixture meet with each other, they combine to form a stable molecule. The combination of radicals lead to the decreasing of the number of radicals available to propagating the reaction, and the reaction slows and stops eventually, so the combination process is called termination step. A few examples of termination are given above, other combinations are possible as well.

The propagation steps are the core steps in halogenation. The energy level diagram helps to provide further understanding of the propagation process.

The 1st step in propagation is endothermic, while the energy absorbed can be offset by the 2nd exothermic step. Therefore the overall propagation is exothermic process and the products are in lower energy level the than reactants.

""

The reaction heat (enthalpy) for each of the propagation step can also be calculated by referring to the homolytic bond dissociation energies (Table 9.1). For such calculation, energy absorbed for bond-breaking step, so the bond energy was given “+” sign, and energy released for bond-forming step, and the “-” sign applied.

Bond

kJ/mol

Bond

kJ/mol

Bond

kJ/mol

                                                       A — B → A • +  B •
F — F159H —Br366CH3 — I240
Cl — Cl243H — I298CH3CH2 —H421
Br — Br193CH3 — H440CH3CH2 —F444
I — I151CH3 — F461CH3CH2 —Cl353
H — F570CH3 — Cl352CH3CH2 — Br295
H — Cl432CH3 — Br293CH3CH2 — I233

Table 9.1 Homolytic Bond Dissociation Energies for Some Single Bonds

Examples

Calculation reaction energy for the propagation step of mono-chlorination of methane (referring to the corresponding bond energies in Table 9.1.)

Solution:

Step 1: H — CH3 + •Cl → CH3• + H — Cl

The H — CH3 bond broken, absorb energy, so +440 kJ

The H — Cl bond formed, release energy, so – 432 kJ

ΔH1 = +440 + (-432) = +8 kJ

Step 2: Cl — Cl + CH3• → CH3 — Cl + •Cl

The Cl — Cl  bond broken, absorb energy, so +243 kJ

The CH3 — Cl formed, release energy, so -352kJ

ΔH2 = +243 + (-352) = – 109kJ

ΔHpropagation = ΔH1 + ΔH2 = +8 + ( – 109 ) = – 101kJ

""

The calculated data does match with the data from the energy diagram.

Reactivity Comparison of Halogenation

The energy changes for halogenation (substitution) with the other halogens can be calculated in the similar way, the results are summarized in Table 9.2.

Reaction

F2

Cl2

Br2

I2

Step 1:

H — CH3 + •X → CH3• + H — X

-130+8+74-142
Step 2:

X — X + CH3• → CH3 — X + • X

-322-109-100-89
Overall propagation:

H — CH3 + X — X → CH3 — X + HX

-452-101-26+53

Table 9.2. Enthalpy of the Propagation Steps in Mono-halogenation of Methane (kJ/mol)

The data above indicate that the halogen radicals have different reactivity, fluorine is most reactive and iodine is least reactive. The iodine radical is very unreactive with overall “+” enthalpy, so iodine does not react with alkane at all. On the other side, the extreme high reactivity of fluorine is not a benefit either, the reaction for fluorine radical is so vigorous or even dangerous with lots heat released, and it is not practical to apply this reaction for any application because it is hard to control it. So Cl2 and Br2, with reactivity in the medium range, are used for halogen substitutions of alkanes. Apparently Cl2 is more reactive than Br2, and this leads to the different selectivity and application between the two halogens, more discussions in section 9.4.

Annotate

Next Chapter
9.3 Stability of Alkyl Radicals
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org