Skip to main content

Organic Chemistry I: 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency

Organic Chemistry I
2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

2.5 Degree of Unsaturation/Index of Hydrogen Deficiency

Now with lots functional groups introduced, the extent of constitutional isomers will be expanded a lot. To further explore the phenomena of constitutional isomers, we will need to understand the concept of Degree of Unsaturation (or: Index of Hydrogen Deficiency/IHD).

Let’s compare three compounds first: pentane, 1-pentene and cyclopentane

""
Figure 2.5a Pentane, 1-pentene, & cyclopentane

The formula for pentane is C5H12. For a compound containing 5 carbons, the maximum number of hydrogens is 12, so the structure of pentane is saturated (no more hydrogen atoms can be added in), or we can say that pentane has zero degree of unsaturation.

For 1-pentene C5H10, there are two less hydrogens than the saturated level (pentane), which means the 1-pentene has one degree of unsaturation. With a ring introduced, cyclopentane (C5H10) also has to sacrifice two hydrogens, so cyclopentane also has one degree of unsaturation. The trend is that when a double bond (essentially a π bond), or a ring, is  involved in the structure, it leads to one degree of unsaturation of the compound.

Formula

Degree of Unsaturation/

Index of Hydrogen Deficiency (IHD)*

Structure Unit Involved

CnH2n+2

0

chain alkane only
CnH2n

1

1 double bond

or 1 ring

CnH2n-2

2

2 double bonds

or 2 rings

or 1 double bond plus 1 ring

or 1 triple bond

Table 2.5 Summary of degree of unsaturation/IHD vs structure unit involved

The degree of unsaturation could be accumulated, and Table 2.5 summarizes the situations up to two degrees. As we can see, adding 1 ring or 1 π bond contributes to one degree of unsaturation. Therefore, the essential meaning of degree of unsaturation is the “number of rings plus π bonds” in a structure.

If the structure of a compound is available to us, the total degrees of unsaturation can simply be counted through inspecting the structure.

Example:

This compound has one ring and one double bond, so the total degree of unsaturation is 2
Figure 2.5b Total degree of unsaturation is 2
Benzene ring means 4 unsaturation degrees (3 double bonds & 1 ring); COOH also include one C=O bond.
Figure 2.5c Total degree of unsaturation is 5

If the formula of a compound is given, we can also calculate the degree of unsaturation by comparing the number of hydrogens vs the saturated level, by using the equation:

Degree of unsaturation = (2n+2)-X/2 (n: number of carbons;      X = number of H + number of Halogen – number of N)

This is a general equation that accounts for the presence of heteroatoms as well. Please note that oxygen atoms are ignored in this calculation. 

For example, for a compound with a formula given as C4H7NO, it is calculated that the degree of unsaturation is 2 for this compound: (2n+2)-X/2 = (2x4+2)-(7-1)/2 = 2

Now we are ready to solve constitutional isomer questions with the application of degrees of unsaturation. Usually, the formula information is available to us for such questions, and we will need to build constitutional isomers based on the given formula together with other requirements. To solve this type of question, it is very helpful to do it strategically by following certain steps:

  • Calculate the degree of unsaturation based on the given formula.
  • With the value of this specific unsaturation degree, how many double bonds or rings might be included in the structure?
  • Combine your knowledge of functional groups with the degree of unsaturation, as well with certain atoms included in the formula, to see what functional group(s) may be possible.
  • Build constitutional isomers according to the above information (separate the isomers by different functional group).

Examples: Draw and name all the constitutional isomers with the molecular formula C4H10O.

Approach: Answering the following questions lead you to the solution.

  • What is the degree of unsaturation for the formula C4H10O?        0
  • How many double bonds, or rings, could be involved?      none
  • What are the possible functional groups that matche with that degree of unsaturation, and include one oxygen atom?                                        alcohol or ether
  • With these hints, we can try to “build” the constitutional isomers for each functional group separately.                                   total seven structures

Solutions:

alcohols:

""

ethers:

""

Exercises 2.2

Draw all the constitutional isomers that include a C=O bond with formula the C5H10O.

Answers to Practice Questions Chapter 2

Annotate

Next Chapter
2.6 Intermolecular Force and Physical Properties of Organic Compounds
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org