Skip to main content

Organic Chemistry I: 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes

Organic Chemistry I
10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes

Addition of Water to Alkenes (Hydration of Alkenes)

An alkene does not react with pure water, since water is not acidic enough to allow the hydrogen to act as an electrophile to start a reaction. However, with the presence of small amount of an acid, the reaction does occur with a water molecule added to the double bond of alkene, and the product is an alcohol. This is the acid-catalyzed addition reaction of water to alkene (also called hydration), and this reaction has great utility in large-scale industrial production of certain low-molecular-weight alcohols.

alkene reacts with water with an acidic catalyst produces alcohol
Figure 10.3a Hydration Reaction

The acid most commonly applied to catalyze this reaction is dilute aqueous solution of sulfuric acid (H2SO4). Sulfuric acid dissociates completely in aqueous solution and the hydronium ion (H3O+) generated participates in the reaction. Strong organic acid, tosyl acid (TsOH), is used sometimes as well.

The mechanism for acid-catalyzed hydration of alkene is essentially the same as the mechanism for the addition of hydrogen halide, HX, to alkenes, and the reaction therefore follows Markovnikov’s rule as well in terms of regioselectivity. The hydration of 1-methylcyclohexene and the reaction mechanism are shown below.

""
Figure 10.3b Mechanism for acid-catalyzed hydration of alkene

Since water molecule can be regarded as H—OH, so the regioselectivity of alcohol product that follows Markovnikov’s rule means the hydrogen atom connects to the double bond carbon that has more hydrogen atoms, and OH group adds to the carbon that has less hydrogen atoms. This can be explained again by the formation of more stable carbocation in the first step of the mechanism. The acidic hydronium ion (H3O+) is regenerated in the last deprotonation step, so only a small amount of acid is required to initiate the reaction, the acid therefore is a catalyst.

Comparing the hydration reaction of alkene to the dehydration reaction of alcohol in section 10.1.2, you would recognize that they are reverse reactions, one is addition and the other is elimination. To produce alcohol from alkene via hydration, water should be in excess to ensure the reaction goes to completion. While to prepare alkene from alcohol through dehydration, high concentration of acid with elevated temperature favor the elimination process and the product can be removed by distillation as they formed to push the equilibrium to alkene side.

""
Figure 10.3c Hydration reaction of alkene vs. dehydration reaction of alcohol

Addition of Alcohol to Alkenes

With the presence of acid, an alcohol can be added to the alkene in the same way that water does, and ether formed as product. For example:

2-methyl-1-butene plus CH3OH with an acidic catalyst (H30+) produces 2-methyl-2-methoxybutane
Figure 10.3d Example of addition of Alcohol to Alkenes

Examples:

Show the mechanism for above addition reaction of methanol to 2-methyl-1-butene.
Refer to the hydration mechanism.

Solutions:

Mechanism: addition of methanol to 2-methyl-1-butene

Step 1: Electrophilic attack of H3O+ to the alkene, carbocation intermediate formed

Step 2: Methanol reacts with the carbocation

Step 3: Deprotonation to get neutral product

""
Note:
Please keep in mind that for the reaction that involves carbocation intermediate, the rearrangement of carbocation is always an option. Therefore the addition of water/alcohol to alkenes may involve carbocation rearrangement if possible.

Exercises 10.3

Show major product(s) for the following reactions.

""

Answers to Practice Questions Chapter 10

Annotate

Next Chapter
10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org