Skip to main content

Organic Chemistry I: 4.2 Cycloalkanes and Their Relative Stabilities

Organic Chemistry I
4.2 Cycloalkanes and Their Relative Stabilities
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

4.2 Cycloalkanes and Their Relative Stabilities

While the open chain alkanes have conformational isomers because of bond rotation, will this apply to cycloalkanes as well? In this section, we will take a look at properties of cycloalkanes first, and then investigate how the different conformers of cycloalkanes contribute to the different stabilities.

The short line structural formulas of cycloalkenes simply look like shapes such as a triangle, square etc. The internal angles of the shapes can be calculated with geometry, as shown below.

cyclopropane (60 degrees), cyclobutane (90 degrees), cyclopentane (108 degrees), and cyclohexane (120 degrees)
Figure 4.2a Short line structural formula of cycloalkanes

An interesting fact about the cycloalkanes is that they have different relative stabilities, and the stability depends on the size of the ring. It has been observed that cyclic compounds found in nature usually are in 5- or 6-membered rings, and the 3- or 4-membered rings are rather rare.

To explain this stability difference, German chemist Adolf von Baeyer proposed the “Bayer Strain Theory”. By assuming all the rings are in a flat (or planar) shape, Bayer Theory suggests that the difference between the ideal bond angle (which is 109.5° for sp3 carbon) and the angle in the planer cycloalkane causes the strain, which is called angle strain. According to the Bayer Theory, cyclopentane would be the most stable because its bond angles, 108°, are closest to the ideal angle of 109.5°. Cyclopropane would be the least stable one since it has the largest angle deviation of 49.5° (60° vs 109.5°). It was also predicted that cyclohexane would be less stable than cyclopentane because of the larger angle deviation (10.5° deviation for cyclohexane vs 1.5° for cyclopentane), and as the number of sides in the cycloalkanes increases beyond six the stability would decrease.

""
Figure 4.2b Which cyclo is stable?

However, experimental results show a different trend. It turns out that cyclohexane is the most stable ring that is strain-free, and is as stable as a chain alkane. Furthermore, cyclic compounds do not become less and less stable as the number of rings increases.

To measure the relative stability of cycloalkanes, the heat of combustion (ΔHcomb) for each cycloalkane was measured. The heat of combustion is the amount of heat released when the compounds burns completely with oxygen. The cycloalkanes will be in higher energy levels than corresponding chain alkanes because of strain energy. Therefore, when cycloalkane burns, more heat will be released, so the difference of ΔHcomb between cycloalkane vs the “strainless” chain alkane is just the amount of strain energy, as shown below. The larger the difference, the higher the strain energy of the cycloalkane. The strain energy for different cycloalkanes measured by this method are listed in Table 4.1.

combustion reaction:  (CH2)n  +  3n/2 O2 → n CO2  + n H2O  +  heat
""
Figure 4.2c The relationship between heat of combustion and strain energy
cyclopropanecyclobutanecyclopentanecyclohexane
Strain Energy (KJ/mol)114110250

Table 4.1 Strain Energies of Cycloalkanes

The major drawback of the Baeyer Theory was that we must assume that all the rings are flat. The highest stability of cyclohexane from experimental results indicate that the rings may not be in a planar shape. We will have a closer look at the actual shape and conformation of 3-, 4-, 5- and 6-membered cycloalkanes.

Cyclopropane

With three carbons for the ring, cyclopropane must be planar.

""
Figure 4.2d Cyclopropane

The bond angle in cyclopropane is 60°, derived significantly from the optimal angle of 109.5°, so it has very high angle strains. The sp3-sp3 orbitals can only overlap partially because of the angle deviation, so the overlapping is not as effective as it should be, and as a result the C-C bond in cyclopropane is relatively weak.

""

Because of the poor overlapping of sp3-sp3orbitals, the bonds formed in cyclopropane resemble the shape of a banana, and are sometimes called banana bonds.

""
Figure 4.2e “Banana bonds” of cyclopropane

Other than the angle strains, all the adjacent C-H bonds are eclipsed in cyclopropane, therefore the torsional strains are applied as well. Such a strain can be “viewed” more clearly from the Newman projection of cyclopropane.

""

The Newman projection of cyclopropane might seems weird at first glance. For cyclopropane, there are three carbons, so the CH2 group connects with both front and rear carbons of  the Newman projection.

Because of the high level of angle strains and torsional strains, 3-membered rings are unstable. They rarely exist in nature and undergo ring-opening reaction easily to release the strains.

Cyclobutane

Cyclobutane is not planar. The ring puckers (or folds) slightly due to the efforts of releasing some torsional strain. Meanwhile, cyclobutane still has a considerable amount of angle strains as the internal angles become about 88° with the folded shape. Overall, cyclobutane is an unstable structure with rather high level of strains.

""

Cyclopentane

Cyclopentane is not planar as well and the total level of strain is lowered quite a lot. It also puckers and adopts a bent conformation where one carbon atom sticks out of the plane of the others, which helps to release the torsional strain by allowing some hydrogen atoms to become almost staggered.

""

This bent shape of cyclopentane is also called the “envelope” conformation. The envelope conformation can undergo a process called “ring flipping” as a result of C-C bond rotation. More discussions about ring flipping will be included in the section of cyclohexane.

""

Annotate

Next Chapter
4.3 Conformation Analysis of Cyclohexane
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org