Skip to main content

Organic Chemistry I: 2.4 IUPAC Naming of Organic Compounds with Functional Groups

Organic Chemistry I
2.4 IUPAC Naming of Organic Compounds with Functional Groups
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

2.4 IUPAC Naming of Organic Compounds with Functional Groups

With the ability to identify functional groups, next we will learn how to give IUPAC names to compounds containing a few functional groups, by following a set of rules.

IUPAC NOMENCLATURE of COMPOUNDS with FUNCTIONAL GROUPS

  1. Find the longest carbon chain containing the functional group with highest priority (see Table 2.3). This chain determines the parent name of the compound.
  2. Change the ending of the parent alkane/alkene/alkyne to the suffix of the highest priority group, which gives the parent name of the compound (usually, drop the last letter “e” before adding the suffix, except for nitrile where the “e” is kept).
  3. Number the chain from the end closest to the highest functional group.
  4. The other groups are named as substituents by using the appropriate prefixes.
  5. Assign stereochemistry, E/Z or R/S, as necessary (details in Chapter 5).

For naming purposes, the functional groups are assigned with priorities (Table 2.3). If the compound includes more than one functional groups, the one with the highest priority is the “parent structure” and determines the “parent name”; the other groups will be regarded as “substituents”. “Suffix” is used to indicate the name of the parent structure, and “prefix” is for the substituent. The order of the groups listed in Table 2.3 is based on the decreasing order of the priority, where carboxylic acid group is in the highest priority. The groups in the subordinate table have no difference in terms of priority, and they are usually listed in the alphabetic order.

""
Table 2.3 Naming Priorities of Common Functional Groups

Table 2.4 Subordinate Groups

We will go through several examples for more details about the naming rules.

1.

""

The parent structure is the 6-carbon carboxylic acid with a double bond, so the last name comes from “hexene”. To add the suffix, the last letter “e” will be dropped, so the parent name is “hexeneoicacid”. A number is necessary to indicate the position of the double bond, so the name is “4-hexenoic acid”. The carboxylic acid group is always on the #1 position, so it is NOT necessary to include that number for the position.

2.

""

This is a ketone based on a cycloalkane, so the last name comes from “cyclohexane’. By adding the suffix, it become “cyclohexanone”, and the complete name is “3-ethylcyclohexanone”.

3.

""

With the multiple groups involved, the ketone has the highest priority, so it decides the last name. The 8-carbon alkene chain with ketone should be name as “octenone”. The numbers on the chain should start from the left side to ensure that ketone has the lowest number. When the OH group is regarded as a substituent, it is indicated by the prefix “hydroxy”. So the complete name is “5-bromo-7-chloro-6-hydroxy-2,2,5-trimethyl-7-octen-4-one”.

4.

""

It is not difficult to find the parent structure for this compound, which is a cyclic alcohol, so the last name is “cyclopropanol”. The naming of the substituent with the benzene ring is bit challenging. When benzene is a “substituent”, it is called “phenyl”; and since there is an isopropyl group on the “phenyl”, the whole substituent is called “3-isopropylphenyl”, and the complete name of the compound is “2,2-dimethyl-3-(3-isopropylphenyl)cyclopropanol”.

5.

""

In ester, an OR group replaces the OH group of a carboxylic acid. When naming the ester, the name of the R in the OR group is stated first, followed by the name of the acid, with “oic acid” replaced by “oate”. As a net result, the R in the OR is regarded as the “substituent”, even though it is not. So, the complete name of the ester above is “tert-butyl propanoate”.

Naming of substituted benzene and benzene derivatives

For substituted benzene, the benzene ring is regarded as the parent structure, and the positions and names of substituents are added to the front.

""
Figure 2.4a Methylbenzene, chlorolbenzene, 1,3-dinitrodenzene, & 1,2,4-trimethylbenzene

For di-substituted benzene, there is another unique way to indicate the relative position of the two substituents by using ortho-, meta- and para-. Although this o-, m-, p- system is the common naming system for benzene derivatives, they have been applied broadly in books and literatures.

  • ortho- (o-): 1,2- (next to each other in a benzene ring)
  • meta- (m): 1,3- (separated by one carbon in a benzene ring)
  • para- (p): 1,4- (across from each other in a benzene ring)

""

For the following mono-substituted benzene derivatives, phenol, benzoic acid and benzaldehyde, their common names are adopted in the IUPAC system.

phenol (hexagon with -OH), benzaldehyde (hexagon with -CHO), & benzoic acid (hexagon with -COOH)
Figure 2.4b Phenol, benzaldehyde, benzoic acid

When other substituents are introduced into those benzene derivatives, the common name will be used as the parent name of the compound with the base functional group (OH for phenol, COOH for benzoic acid and CHO for benzaldehyde) given the #1 position. For example:

Benzene with -Oh on the first Cl on the 2nd and fourth
Figure 2.4c 2,4-dichlorophenol
benzene with a COOH on the first, -BR on the second, & a methyl on the fourth
Figure 2.4d 2-bromo-4-methylbenzoic acid

When benzene is the connected with a carbon chain that has six or more carbons, the carbon chain should be regarded as the parent structure, and the benzene ring becomes the substituent and will be indicated with the prefix “phenyl”. An example is given here:

7 carbon with a benzene on the second
Figure 2.4e 2-phenylheptane

Annotate

Next Chapter
2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org