Skip to main content

Organic Chemistry I: 10.5 Reaction of Alkenes: Hydrogenation

Organic Chemistry I
10.5 Reaction of Alkenes: Hydrogenation
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Acknowledgements
  7. Chapter 1 Basic Concepts in Chemical Bonding and Organic Molecules
    1. 1.1 Chemical Bonding
    2. 1.2 Lewis Structure
    3. 1.3 Resonance Structures
    4. 1.4 Resonance structures in Organic Chemistry
    5. 1.5 Valence-Shell Electron-Pair Repulsion Theory (VSEPR)
    6. 1.6 Valence Bond Theory and Hybridization
    7. Answers to Practice Questions Chapter 1
  8. Chapter 2 Fundamental of Organic Structures
    1. 2.1 Structures of Alkenes
    2. 2.2 Nomenclature of Alkanes
    3. 2.3 Functional Groups
    4. 2.4 IUPAC Naming of Organic Compounds with Functional Groups
    5. 2.5 Degree of Unsaturation/Index of Hydrogen Deficiency
    6. 2.6 Intermolecular Force and Physical Properties of Organic Compounds
    7. Answers to Practice Questions Chapter 2
  9. Chapter 3 Acids and Bases: Organic Reaction Mechanism Introduction
    1. 3.1 Review of Acids and Bases and Ka
    2. 3.2 Organic Acids and Bases and Organic Reaction Mechanism
    3. 3.3 pKa of Organic Acids and Application of pKa to Predict Acid-Base Reaction Outcome
    4. 3.4 Structural Effects on Acidity and Basicity
    5. 3.5 Lewis Acids and Lewis Bases
    6. Answers to Practice Questions Chapter 3
  10. Chapter 4 Conformations of Alkanes and Cycloalkanes
    1. 4.1 Conformation Analysis of Alkanes
    2. 4.2 Cycloalkanes and Their Relative Stabilities
    3. 4.3 Conformation Analysis of Cyclohexane
    4. 4.4 Substituted Cyclohexanes
    5. Answers to Practice Questions Chapter 4
  11. Chapter 5 Stereochemistry
    1. 5.1 Summary of Isomers
    2. 5.2 Geometric Isomers and E/Z Naming System
    3. 5.3 Chirality and R/S Naming System
    4. 5.4 Optical Activity
    5. 5.5 Fisher Projection
    6. 5.6 Compounds with More Than One Chirality Centers
    7. Answers to Practice Questions Chapter 5
  12. Chapter 6 Structural Identification of Organic Compounds: IR and NMR Spectroscopy
    1. 6.1 Electromagnetic Radiation and Molecular Spectroscopy
    2. 6.2 Infrared (IR) Spectroscopy Theory
    3. 6.3 IR Spectrum and Characteristic Absorption Bands
    4. 6.4 IR Spectrum Interpretation Practice
    5. 6.5 NMR Theory and Experiment
    6. 6.6 ¹H NMR Spectra and Interpretation (Part I)
    7. 6.7 ¹H NMR Spectra and Interpretation (Part II)
    8. 6.8 ¹³C NMR Spectroscopy
    9. 6.9 Structure Determination Practice
    10. Answers to Practice Questions Chapter 6
  13. Chapter 7 Nucleophilic Substitution Reactions
    1. 7.1 Nucleophilic Substitution Reaction Overview
    2. 7.2 SN2 Reaction Mechanism, Energy Diagram and Stereochemistry
    3. 7.3 Other Factors that Affect SN2 Reactions
    4. 7.4 SN1 Reaction Mechanism, Energy Diagram and Stereochemistry
    5. 7.5 SN1 vs SN2
    6. 7.6 Extra Topics on Nucleophilic Substitution Reaction
    7. Answers to Practice Questions Chapter 7
  14. Chapter 8 Elimination Reactions
    1. 8.1 E2 Reaction
    2. 8.2 E1 Reaction
    3. 8.3 E1/E2 Summary
    4. 8.4 Comparison and Competition Between SN1, SN2, E1 and E2
    5. Answers to Practice Questions Chapter 8
  15. Chapter 9 Free Radical Substitution Reaction of Alkanes
    1. 9.1 Homolytic and Heterolytic Cleavage
    2. 9.2 Halogenation Reaction of Alkanes
    3. 9.3 Stability of Alkyl Radicals
    4. 9.4 Chlorination vs Bromination
    5. 9.5 Stereochemistry for Halogenation of Alkanes
    6. 9.6 Synthesis of Target Molecules: Introduction of Retrosynthetic Analysis
    7. Answers to Practice Questions Chapter 9
  16. Chapter 10 Alkenes and Alkynes
    1. 10.1 Synthesis of Alkenes
    2. 10.2 Reactions of Alkenes: Addition of Hydrogen Halide to Alkenes
    3. 10.3 Reactions of Alkenes: Addition of Water (or Alcohol) to Alkenes
    4. 10.4 Reactions of Alkenes: Addition of Bromine and Chlorine to Alkenes
    5. 10.5 Reaction of Alkenes: Hydrogenation
    6. 10.6 Two Other Hydration Reactions of Alkenes
    7. 10.7 Oxidation Reactions of Alkenes
    8. 10.8 Alkynes
    9. Answers to Practice Questions Chapter 10
  17. About the Author

10.5 Reaction of Alkenes: Hydrogenation

When alkenes react with hydrogen gas in the presence of a variety of metal catalysts, a hydrogen molecule will be added to the double bond in the way that each carbon atom bonded with one hydrogen atom, such addition reaction is called hydrogenation.

""

Catalysts are must-have for hydrogenation, so the reaction can also be called catalytic hydrogenation. The commonly applied metal catalysts involve palladium and platinum. Palladium, which is used as a powder absorbed on charcoal to maximize the surface area, is the most common catalyst that is referred to as palladium on charcoal (Pd/carbon). Platinum, which is used usually as oxide PtO2, is also employed frequently and referred to as Adams catalyst. These metal catalysts are not soluble in the reaction mixture and therefore are described as heterogeneous catalysts. The heterogeneous catalyst can be easily filtrated out of the reaction mixture after reaction, and then be recycled and reused.

""

The hydrogenation reaction does not take place without catalyst because of the enormous activation energy. The catalysts lower down the activation energy by weakening the H-H bond, and make the reaction feasible at room temperature. The details of the mechanism of catalytical hydrogenation are not completely clear. What was understood was that hydrogen gas is adsorbed on the surface of the metal, and the alkene also complexes with the metal by overlapping its π orbitals with vacant orbitals of the metal. The reaction occur on the surface of the metal catalyst, with both hydrogen atoms added from the same side of the alkene, to give alkane as the product that diffuses away from the metal surface. This mode of addition that the atoms added from the same side of the alkene is called the syn addition.

""

""

Example:

""

Annotate

Next Chapter
10.6 Two Other Hydration Reactions of Alkenes
PreviousNext
Chemistry
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org