Skip to main content

Introduction to Chemistry: Introduction

Introduction to Chemistry
Introduction
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Introduction
  6. Preface
  7. Acknowledgements
  8. About the Authors
  9. Chapter 1. Chemistry: An Experimental Science
    1. 1.0 Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
  10. Chapter 2. Atoms, Molecules, and Ions
    1. 2.0 Introduction
    2. 2.1 Atomic Theory
    3. 2.2 Beyond Dalton’s Atomic Theory
    4. 2.3 Atomic Structure and Symbols
    5. 2.4 Chemical Formulas
    6. 2.5 The Periodic Table
  11. Chapter 3. Ions, Bonding and Compound Formation
    1. 3.0 Introduction
    2. 3.1 Ionic and Molecular Compounds
    3. 3.2 Nomenclature of Simple Ionic and Molecular Compounds
  12. Chapter 4. Chemical Reactions and Equations
    1. 4.0 Introduction
    2. 4.1 Writing and Balancing Chemical Equations
    3. 4.2 Precipitation Reactions
    4. 4.3 Acid-Base Reactions
    5. 4.4 Oxidation-Reduction Reactions
  13. Chapter 5. Bridging the Macroscopic and Microscopic Realms
    1. 5.0 Introduction
    2. 5.1 Formula Mass
    3. 5.2 The Mole
    4. 5.3 Reaction Stoichiometry
    5. 5.4 Limiting Reactant and Reaction Yields
  14. Chapter 6. Solutions
    1. 6.0 Introduction
    2. 6.1 Solution Concentration and Molarity
    3. 6.2 Other Concentration Units
  15. Chapter 7. Chemical Bonding and Lewis Structures
    1. 7.0 Introduction
    2. 7.1 Covalent Bonding
    3. 7.2 Lewis Dot Structures
    4. 7.3 Lewis Structures and Covalent Compounds
  16. Additional Reading: Electronic Structure of Atoms
    1. 8.0 Introduction
    2. 8.1 Electromagnetic Energy
    3. 8.2 Quantization of the Energy of Electrons
    4. 8.3 Development of Quantum Theory
    5. 8.4 Electronic Structure of Atoms
    6. 8.5 Periodic Trends
  17. Chapter LAB1. Making Measurements
    1. Introduction
    2. LAB1.1 Expressing Numbers
    3. LAB1.2 Measurements and Units
    4. LAB1.3 Measurement Uncertainty, Accuracy, and Precision
    5. LAB1.4 Mathematical Treatment of Measurement Results – Unit Conversions
    6. LAB1.5 Density – A Derived Unit and Conversion Factor
  18. Appendix
  19. Appendix A: The Periodic Table
  20. Appendix B: Essential Mathematics
  21. Appendix C: Units and Conversion Factors
  22. Appendix D: Fundamental Physical Constants

37

Introduction

Introduction

Data suggest that a male child will weigh 50% of his adult weight at about 11 years of age. However, he will reach 50% of his adult height at only 2 years of age. It is obvious, then, that people eventually stop growing up but continue to grow out. Data also suggest that the average human height has been increasing over time. In industrialized countries, the average height of people increased 5.5 inches from 1810 to 1984. Most scientists attribute this simple, basic measurement of the human body to better health and nutrition.

Stature Percentile
Source: Chart courtesy of Centers for Disease Control and Prevention, http://www.cdc.gov/nchs/nhanes.htm#Set%201.

In 1983, an Air Canada airplane had to make an emergency landing because it unexpectedly ran out of fuel; ground personnel had filled the fuel tanks with a certain number of pounds of fuel, not kilograms of fuel. In 1999, the Mars Climate Orbiter spacecraft was lost attempting to orbit Mars because the thrusters were programmed in terms of English units, even though the engineers built the spacecraft using metric units. In 1993, a nurse mistakenly administered 23 units of morphine to a patient rather than the “2–3” units prescribed. (The patient ultimately survived.) These incidents occurred because people weren’t paying attention to quantities.

Chemistry, like all sciences, is quantitative. It deals with quantities, things that have amounts and units. Making measurements is very important in chemistry, as is dealing with quantities and relating quantities to each other.

Annotate

Next Chapter
LAB1.1 Expressing Numbers
PreviousNext
Chemistry
Copyright © 2020 by Carol Higginbotham. Introduction to Chemistry by Carol Higginbotham is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org