Skip to main content

General Biology II: Do all gene affect health and development?

General Biology II
Do all gene affect health and development?
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Reference Information
  6. The Process of Science
  7. 3. Biological Molecules
  8. 4. Structure of DNA
  9. 5. DNA Replication
  10. 6. Protein Synthesis
    1. 6.1 What are proteins and what do they do?
    2. 6.2 What is a gene?
    3. 6.3 How do genes direct the production of proteins?
    4. 6.4 Transcription: from DNA to mRNA
    5. 6.5 Eukaryotic RNA Processing
    6. 6.6 Translation
    7. 6.7 The Genetic Code
    8. Optional Section - Micropigs
  11. 7. Mutations
    1. How Gene Mutations Occur
    2. Intro to Genetic Disorders
    3. Do all gene affect health and development?
    4. Types of Mutations
    5. Changes in Numbers of Genes
    6. Changes in Chromosome Number
    7. Complex Multifactorial Disorders
    8. Genetic Predispositions
    9. Genetics and Statistics
  12. Gene Regulation
    1. 8.1 Prokaryotic versus Eukaryotic Gene Expression
    2. 8.2 What is the epigenome?
    3. 8.3 Alternative RNA splicing
  13. 9. Biotechnology
    1. 9.1 Manipulating Genetic Material
    2. 9.2 Cloning
    3. 9.3 Genetic Engineering
    4. 9.4 Biotechnology in Medicine and Agriculture
    5. 9.5 Genomics and Proteomics
    6. 9.6 Applying Genomics
    7. 9.7 Proteomics
  14. 10. Cell Division - Binary Fission and Mitosis
    1. 10.1 Prokaryotic Cell Division
    2. 10.2 Eukaryotic Cell Division
    3. 10.3 Control of the Cell Cycle
    4. 10.4 Cancer and the Cell Cycle
  15. 11. Meiosis
    1. 11.1 Sexual Reproduction
    2. 11.2 Overview of Meiosis
    3. 11.3 Interphase
    4. 11.4 Meiosis I
    5. 11.5 Meiosis II
    6. 11.6 Comparing Meiosis and Mitosis
    7. 11.7 Errors in Meiosis
  16. 12. Patterns of Inheritance
    1. 12.1 Mendelian Genetics
    2. 12.2 Garden Pea Characteristics Revealed the Basics of Heredity
    3. 12.3 Phenotypes and Genotypes
    4. 12.4 Monohybrid Cross and the Punnett Square
    5. 12.5 Laws of Inheritance
    6. 12.6 Extensions of the Laws of Inheritance
    7. 12.7 Multiple Alleles
    8. 12.8 Sex-Linked Traits
    9. 12.9 Linked Genes Violate the Law of Independent Assortment
    10. 12.10 Epistasis
  17. Genetics: Dog Coat Color
    1. Introduction to Genetics
    2. Pedigrees and Punnett Squares
    3. Black fur color: a dominant trait
    4. Yellow fur color: a recessive trait
    5. Epistasis: the relationship between black, brown, and yellow fur
    6. Brindle color: partial dominance and epistasis
    7. Incomplete dominance: when traits blend
    8. White spotting: When there's more than two alleles
    9. Hemophilia: a sex-linked disorder
    10. Overall phenotypes: putting it all together
    11. Additional complexity
    12. It's not all in the genes

Do all gene affect health and development?

No; only a small percentage of mutations cause genetic disorders—most have no impact on health or development. For example, some mutations alter a gene’s DNA sequence but do not change the function of the protein made by the gene.

Often, gene mutations that could cause a genetic disorder are repaired by certain enzymes before the gene is expressed and an altered protein is produced. Each cell has a number of pathways through which enzymes recognize and repair mistakes in DNA. Because DNA can be damaged or mutated in many ways, DNA repair is an important process by which the body protects itself from disease.

A very small percentage of all mutations actually have a positive effect. These mutations lead to new versions of proteins that help an individual better adapt to changes in his or her environment. For example, a beneficial mutation could result in a protein that protects an individual and future generations from a new strain of bacteria.

Because a person’s genetic code can have a large number of mutations with no effect on health, diagnosing genetic conditions can be difficult. Sometimes, genes thought to be related to a particular genetic condition have mutations, but whether these changes are involved in development of the condition has not been determined; these genetic changes are known as variants of unknown significance (VOUS). Sometimes, no mutations are found in suspected disease- related genes, but mutations are found in other genes whose relationship to a particular genetic condition is unknown. It is difficult to know whether these variants are involved in the disease.

Blue lobster
Figure: This lobster contains a mutation that causes it to be blue. This is estimated to occur in roughly one in two million lobsters.

References

“Mutations and Health” by U.S. National Library of Medicine is in the Public Domain

Annotate

Next Chapter
Types of Mutations
PreviousNext
Biology
Copyright © 2016 by Lisa Bartee and Christine Anderson. Mt Hood Community College Biology 102 by Lisa Bartee and Christine Anderson is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org