Skip to main content

General Biology II: Introduction to Genetics

General Biology II
Introduction to Genetics
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Reference Information
  6. The Process of Science
  7. 3. Biological Molecules
  8. 4. Structure of DNA
  9. 5. DNA Replication
  10. 6. Protein Synthesis
    1. 6.1 What are proteins and what do they do?
    2. 6.2 What is a gene?
    3. 6.3 How do genes direct the production of proteins?
    4. 6.4 Transcription: from DNA to mRNA
    5. 6.5 Eukaryotic RNA Processing
    6. 6.6 Translation
    7. 6.7 The Genetic Code
    8. Optional Section - Micropigs
  11. 7. Mutations
    1. How Gene Mutations Occur
    2. Intro to Genetic Disorders
    3. Do all gene affect health and development?
    4. Types of Mutations
    5. Changes in Numbers of Genes
    6. Changes in Chromosome Number
    7. Complex Multifactorial Disorders
    8. Genetic Predispositions
    9. Genetics and Statistics
  12. Gene Regulation
    1. 8.1 Prokaryotic versus Eukaryotic Gene Expression
    2. 8.2 What is the epigenome?
    3. 8.3 Alternative RNA splicing
  13. 9. Biotechnology
    1. 9.1 Manipulating Genetic Material
    2. 9.2 Cloning
    3. 9.3 Genetic Engineering
    4. 9.4 Biotechnology in Medicine and Agriculture
    5. 9.5 Genomics and Proteomics
    6. 9.6 Applying Genomics
    7. 9.7 Proteomics
  14. 10. Cell Division - Binary Fission and Mitosis
    1. 10.1 Prokaryotic Cell Division
    2. 10.2 Eukaryotic Cell Division
    3. 10.3 Control of the Cell Cycle
    4. 10.4 Cancer and the Cell Cycle
  15. 11. Meiosis
    1. 11.1 Sexual Reproduction
    2. 11.2 Overview of Meiosis
    3. 11.3 Interphase
    4. 11.4 Meiosis I
    5. 11.5 Meiosis II
    6. 11.6 Comparing Meiosis and Mitosis
    7. 11.7 Errors in Meiosis
  16. 12. Patterns of Inheritance
    1. 12.1 Mendelian Genetics
    2. 12.2 Garden Pea Characteristics Revealed the Basics of Heredity
    3. 12.3 Phenotypes and Genotypes
    4. 12.4 Monohybrid Cross and the Punnett Square
    5. 12.5 Laws of Inheritance
    6. 12.6 Extensions of the Laws of Inheritance
    7. 12.7 Multiple Alleles
    8. 12.8 Sex-Linked Traits
    9. 12.9 Linked Genes Violate the Law of Independent Assortment
    10. 12.10 Epistasis
  17. Genetics: Dog Coat Color
    1. Introduction to Genetics
    2. Pedigrees and Punnett Squares
    3. Black fur color: a dominant trait
    4. Yellow fur color: a recessive trait
    5. Epistasis: the relationship between black, brown, and yellow fur
    6. Brindle color: partial dominance and epistasis
    7. Incomplete dominance: when traits blend
    8. White spotting: When there's more than two alleles
    9. Hemophilia: a sex-linked disorder
    10. Overall phenotypes: putting it all together
    11. Additional complexity
    12. It's not all in the genes

Introduction to Genetics

“Genetics” is the study of how traits are inherited.A trait is defined as a variation in the physical appearance of a heritable characteristic. It seeks to understand how traits are passed from generation to generation. Before you start learning about the details of inheritance, let’s review some topics that are important in order to understand genetics.

Recall that genes are segments of DNA that are typically several hundred or thousand bases long. Each gene directs the production of a protein through the process of protein synthesis: DNA gets transcribed to produce an mRNA; mRNA provides to code for a ribosome to produce a chain of amino acids. Read this section of the book if you need to review this topic: How do genes direct the production of proteins?

04.centraldogma
The Central Dogma – DNA is used to make RNA is used to make protein

Recall that eukaryotic genes are found on chromosomes and that each eukaryotic chromosome typically contains hundreds or thousands of genes. In most eukaryotes, including humans and other animals, each cell contains two copies of each chromosome. The reason we have two copies of each gene is that we inherit one from each parent.

In contrast to eukaryotes, prokaryotes have one circular chromosome. This means they have one copy of each gene.

Read this section of the book if you need to review this topic: How DNA is arranged in the cell

Figure 3: There are 23 pairs of chromosomes in a female human body cell. These chromosomes are viewed within the nucleus (top), removed from a cell during cell division (right), and arranged according to length (left) in an arrangement called a karyotype. In this image, the chromosomes were exposed to fluorescent stains to distinguish them. (credit: “718 Bot”/Wikimedia Commons, National Human Genome Research)
There are 23 pairs of chromosomes in a female human body cell. These chromosomes are viewed within the nucleus (top), removed from a cell during cell division (right), and arranged according to length (left) in an arrangement called a karyotype. In this image, the chromosomes were exposed to fluorescent stains to distinguish them. (credit: “718 Bot”/Wikimedia Commons, National Human Genome Research)

Chromosomes are inherited by the offspring from the parents via the egg or sperm. Inside one egg or one sperm is one copy of each chronometer (so 23 total in humans). When an egg is fertilized by a sperm, the resulting zygote (fertilized egg) will contain two copies of each chromosome, just like each of its parents.

Meiosis is the process that produces eggs and sperm. Eggs and sperm are also known as gametes. During meiosis, one copy of each paired chromosome is moved into the gamete. Cells with one copy of each chromosome are known as “haploid“. This separation, or segregation, of the homologous (paired) chromosomes means also that only one of the copies of the gene gets moved into a gamete.

The offspring are formed when that gamete unites with one from another parent and the two copies of each gene (and chromosome) are restored. Read this section of the book if you need more information on this topic: Overview of Meiosis

09.3randomassortnment
During meiosis, the DNA is copied once, then the cell divides twice. This produces cells with half as much genetic information as the original cell (1 copy of each chromosome). These cells become the sex cells (eggs or sperm). When two sex cells unite during fertilization, the original number of chromosomes (2 copies of each one) is restored.

The offspring will receive two copies of each gene (one from each parent), but the copies are not necessarily identical. You already knew this – you don’t get identical information from your mother and your father because they have different DNA (which gives them different traits). The different versions of one specific gene are known as alleles. As you learn about genetics, you will learn about how the information from both alleles of a specific gene interact to give an individual their trait. The genetic information that an individual has is called their genotype. The genotype of an individual produces the individual’s phenotype, or physical traits.

References

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

OpenStax, Concepts of Biology. OpenStax CNX. May 18, 2016 http://cnx.org/contents/s8Hh0oOc@9.10:8v2Xzdco@5/The-Structure-of-DNA

Annotate

Next Chapter
Pedigrees and Punnett Squares
PreviousNext
Biology
Copyright © 2016 by Lisa Bartee and Christine Anderson. Mt Hood Community College Biology 102 by Lisa Bartee and Christine Anderson is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org