Skip to main content

General Biology II: 12.7 Multiple Alleles

General Biology II
12.7 Multiple Alleles
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Reference Information
  6. The Process of Science
  7. 3. Biological Molecules
  8. 4. Structure of DNA
  9. 5. DNA Replication
  10. 6. Protein Synthesis
    1. 6.1 What are proteins and what do they do?
    2. 6.2 What is a gene?
    3. 6.3 How do genes direct the production of proteins?
    4. 6.4 Transcription: from DNA to mRNA
    5. 6.5 Eukaryotic RNA Processing
    6. 6.6 Translation
    7. 6.7 The Genetic Code
    8. Optional Section - Micropigs
  11. 7. Mutations
    1. How Gene Mutations Occur
    2. Intro to Genetic Disorders
    3. Do all gene affect health and development?
    4. Types of Mutations
    5. Changes in Numbers of Genes
    6. Changes in Chromosome Number
    7. Complex Multifactorial Disorders
    8. Genetic Predispositions
    9. Genetics and Statistics
  12. Gene Regulation
    1. 8.1 Prokaryotic versus Eukaryotic Gene Expression
    2. 8.2 What is the epigenome?
    3. 8.3 Alternative RNA splicing
  13. 9. Biotechnology
    1. 9.1 Manipulating Genetic Material
    2. 9.2 Cloning
    3. 9.3 Genetic Engineering
    4. 9.4 Biotechnology in Medicine and Agriculture
    5. 9.5 Genomics and Proteomics
    6. 9.6 Applying Genomics
    7. 9.7 Proteomics
  14. 10. Cell Division - Binary Fission and Mitosis
    1. 10.1 Prokaryotic Cell Division
    2. 10.2 Eukaryotic Cell Division
    3. 10.3 Control of the Cell Cycle
    4. 10.4 Cancer and the Cell Cycle
  15. 11. Meiosis
    1. 11.1 Sexual Reproduction
    2. 11.2 Overview of Meiosis
    3. 11.3 Interphase
    4. 11.4 Meiosis I
    5. 11.5 Meiosis II
    6. 11.6 Comparing Meiosis and Mitosis
    7. 11.7 Errors in Meiosis
  16. 12. Patterns of Inheritance
    1. 12.1 Mendelian Genetics
    2. 12.2 Garden Pea Characteristics Revealed the Basics of Heredity
    3. 12.3 Phenotypes and Genotypes
    4. 12.4 Monohybrid Cross and the Punnett Square
    5. 12.5 Laws of Inheritance
    6. 12.6 Extensions of the Laws of Inheritance
    7. 12.7 Multiple Alleles
    8. 12.8 Sex-Linked Traits
    9. 12.9 Linked Genes Violate the Law of Independent Assortment
    10. 12.10 Epistasis
  17. Genetics: Dog Coat Color
    1. Introduction to Genetics
    2. Pedigrees and Punnett Squares
    3. Black fur color: a dominant trait
    4. Yellow fur color: a recessive trait
    5. Epistasis: the relationship between black, brown, and yellow fur
    6. Brindle color: partial dominance and epistasis
    7. Incomplete dominance: when traits blend
    8. White spotting: When there's more than two alleles
    9. Hemophilia: a sex-linked disorder
    10. Overall phenotypes: putting it all together
    11. Additional complexity
    12. It's not all in the genes

12.7 Multiple Alleles

Mendel implied that only two alleles, one dominant and one recessive, could exist for a given gene. We now know that this is an oversimplification. Although individual humans (and all diploid organisms) can only have two alleles for a given gene, multiple alleles may exist at the population level, such that many combinations of two alleles are observed. Note that when many alleles exist for the same gene, the convention is to denote the most common phenotype or genotype in the natural population as the wild type (often abbreviated “+”). All other phenotypes or genotypes are considered variants (mutants) of this typical form, meaning they deviate from the wild type. The variant may be recessive or dominant to the wild-type allele.

An example of multiple alleles is the ABO blood-type system in humans. In this case, there are three alleles circulating in the population. The IA allele codes for A molecules on the red blood cells, the IB allele codes for B molecules on the surface of red blood cells, and the i allele codes for no molecules on the red blood cells. In this case, the IA and IB alleles are codominant with each other and are both dominant over the i allele. Although there are three alleles present in a population, each individual only gets two of the alleles from their parents. This produces the genotypes and phenotypes shown in Figure 14. Notice that instead of three genotypes, there are six different genotypes when there are three alleles. The number of possible phenotypes depends on the dominance relationships between the three alleles.

10n.bloodtypes
Figure 14: Inheritance of the ABO blood system in humans is shown.

Multiple Alleles Confer Drug Resistance in the Malaria Parasite

Malaria is a parasitic disease in humans that is transmitted by infected female mosquitoes, including Anopheles gambiae, and is characteried by cyclic high fevers, chills, flu-like symptoms, and severe anemia. Plasmodium falciparum and P. vivax are the most common causative agents of malaria, and P. falciparum is the most deadly. When promptly and correctly treated, P. falciparum malaria has a mortality rate of 0.1 percent. However, in some parts of the world, the parasite has evolved resistance to commonly used malaria treatments, so the most effective malarial treatments can vary by geographic region.

References

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

OpenStax, Biology. OpenStax CNX. May 27, 2016 http://cnx.org/contents/GFy_h8cu@10.57:4qg08nt-@8/Characteristics-and-Traits

Annotate

Next Chapter
12.8 Sex-Linked Traits
PreviousNext
Biology
Copyright © 2016 by Lisa Bartee and Christine Anderson. Mt Hood Community College Biology 102 by Lisa Bartee and Christine Anderson is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org