Skip to main content

General Biology II: Epistasis: the relationship between black, brown, and yellow fur

General Biology II
Epistasis: the relationship between black, brown, and yellow fur
    • Notifications
    • Privacy
  • Project HomeNatural Sciences Collection: Anatomy, Biology, and Chemistry
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Cover
  2. Title Page
  3. Copyright
  4. Table Of Contents
  5. Reference Information
  6. The Process of Science
  7. 3. Biological Molecules
  8. 4. Structure of DNA
  9. 5. DNA Replication
  10. 6. Protein Synthesis
    1. 6.1 What are proteins and what do they do?
    2. 6.2 What is a gene?
    3. 6.3 How do genes direct the production of proteins?
    4. 6.4 Transcription: from DNA to mRNA
    5. 6.5 Eukaryotic RNA Processing
    6. 6.6 Translation
    7. 6.7 The Genetic Code
    8. Optional Section - Micropigs
  11. 7. Mutations
    1. How Gene Mutations Occur
    2. Intro to Genetic Disorders
    3. Do all gene affect health and development?
    4. Types of Mutations
    5. Changes in Numbers of Genes
    6. Changes in Chromosome Number
    7. Complex Multifactorial Disorders
    8. Genetic Predispositions
    9. Genetics and Statistics
  12. Gene Regulation
    1. 8.1 Prokaryotic versus Eukaryotic Gene Expression
    2. 8.2 What is the epigenome?
    3. 8.3 Alternative RNA splicing
  13. 9. Biotechnology
    1. 9.1 Manipulating Genetic Material
    2. 9.2 Cloning
    3. 9.3 Genetic Engineering
    4. 9.4 Biotechnology in Medicine and Agriculture
    5. 9.5 Genomics and Proteomics
    6. 9.6 Applying Genomics
    7. 9.7 Proteomics
  14. 10. Cell Division - Binary Fission and Mitosis
    1. 10.1 Prokaryotic Cell Division
    2. 10.2 Eukaryotic Cell Division
    3. 10.3 Control of the Cell Cycle
    4. 10.4 Cancer and the Cell Cycle
  15. 11. Meiosis
    1. 11.1 Sexual Reproduction
    2. 11.2 Overview of Meiosis
    3. 11.3 Interphase
    4. 11.4 Meiosis I
    5. 11.5 Meiosis II
    6. 11.6 Comparing Meiosis and Mitosis
    7. 11.7 Errors in Meiosis
  16. 12. Patterns of Inheritance
    1. 12.1 Mendelian Genetics
    2. 12.2 Garden Pea Characteristics Revealed the Basics of Heredity
    3. 12.3 Phenotypes and Genotypes
    4. 12.4 Monohybrid Cross and the Punnett Square
    5. 12.5 Laws of Inheritance
    6. 12.6 Extensions of the Laws of Inheritance
    7. 12.7 Multiple Alleles
    8. 12.8 Sex-Linked Traits
    9. 12.9 Linked Genes Violate the Law of Independent Assortment
    10. 12.10 Epistasis
  17. Genetics: Dog Coat Color
    1. Introduction to Genetics
    2. Pedigrees and Punnett Squares
    3. Black fur color: a dominant trait
    4. Yellow fur color: a recessive trait
    5. Epistasis: the relationship between black, brown, and yellow fur
    6. Brindle color: partial dominance and epistasis
    7. Incomplete dominance: when traits blend
    8. White spotting: When there's more than two alleles
    9. Hemophilia: a sex-linked disorder
    10. Overall phenotypes: putting it all together
    11. Additional complexity
    12. It's not all in the genes

Epistasis: the relationship between black, brown, and yellow fur

Epistasis

Dogs don’t have either the TYRP1 gene or the MC1R gene – they have both. In fact, every dog will have two copies of the TYRP1 gene and two copies of the MC1R gene. Since both genes control aspects of coat color, it makes sense that they interact. In fact, TYRP1 and MC1R have what is called an epistatic relationship: the action of one gene controls the expression of a second gene. Another way to phrase this relationship is that the effect of one gene is dependent on another gene.

Remember that TYRP1 is required for the production of eumelanin. The dominant allele of TYRP1 (B) produces black eumelanin, while the recessive allele (b) produces brown eumelanin.  However, if a dog is homozygous recessive for MC1R (ee), they lack the ability to produce eumelanin at all. If no eumelanin is being produced, it doesn’t matter whether it would have been black or brown: there is none. This means that any dog that is homozygous recessive for MC1R will appear yellow regardless of its genotype at TYRP1. These two genes are epistatic: the action of MC1R controls the expression of TYRP1. The effect of TYRP1 is dependent on MC1R.

If a dog has at least one dominant functioning allele of MC1R, then its genotype at TYRP1 can be seen. If the dog has at least one dominant allele of TYRP1, it will appear black. If it has two recessive alleles, it will appear brown.

11.LabRetColors
Figure 17: Genotypes for TYRP1 (B) and MC1R (E) that lead to the three recognized colors of labs. (Credit EArellano, from Wikimedia)

A pedigree can be used to show the inheritance of two different genes such as TYRP1 and MC1R.

11e.allcolorped
Figure 18: In this pedigree, a cross between an individual who is heterozygous for both MC1R and TYRP1 and an individual who has the genotype “Bbee”is shown. Black individuals are shaded black, yellow individuals are shaded yellow, and brown individuals are shaded grey. The 6 different possible genotypes are each shown as one offspring. This does not give you any information about the probability of getting a certain genotype of offspring – it gives you the actual number of offspring observed and their traits.

Punnett squares can also be used to show this cross. If the probability of inheriting one trait is multiplied by the probability of inheriting the second trait, the overall probability of getting any given offspring can be determined.

11e.twopunnett
Figure 19: These two Punnett squares can be used to determine the results of a cross between these individuals: Bbee x BbEe. If you wanted to determine the probability of getting a brown dog, you would multiply the probability of getting bb by the probability of having at least one dominant E. That would equal 1/4 x 1/2 = 1/8. This gives you the probability of getting a brown dog, but doesn’t tell you anything about the number of brown dogs actually observed.

Human Connection

Individuals who have albinism lack the ability to produce any pigment. If no pigment is being produced, the color that the pigment would have been is unimportant. The effect of the pigment genes is controlled by the gene that allows pigment to be produced. This is an example of epistasis.

Albinism can occur in humans (see the section on TYRP1) as well as other animals, such as the squirrel seen below.

13.UNTalbinosquirrel

Photo credit: Stephenkniatt from Wikipedia.

References:

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

OpenStax, Biology. OpenStax CNX. May 27, 2016 http://cnx.org/contents/s8Hh0oOc@9.10:zLLYW2hj@5/Extensions-of-the-Laws-of-Inhe

Schmutz SM, Berryere TG, Goldfinch AD. 2002. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mammalian Genome 13, 380-387.

Annotate

Next Chapter
Brindle color: partial dominance and epistasis
PreviousNext
Biology
Copyright © 2016 by Lisa Bartee and Christine Anderson. Mt Hood Community College Biology 102 by Lisa Bartee and Christine Anderson is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org